
1 23

Metallurgical and Materials
Transactions A
 
ISSN 1073-5623
 
Metall and Mat Trans A
DOI 10.1007/s11661-019-05361-3

A New Metric for the Space of Macroscopic
Parameters of Grain Interfaces

A. Morawiec



1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.



Communication
A New Metric for the Space
of Macroscopic Parameters of Grain
Interfaces

A. MORAWIEC

Analysis of datasets of macroscopic grain boundary
parameters is based on grouping boundaries with similar
parameters. Therefore, a measure of similarity or a
distance between interfaces is needed. The paper intro-
duces a new interface distance function. The function
has properties allowing for accounting for equivalences
among points in the macroscopic parameter space.
Moreover, it has a simple interpretation: it minimizes
the sum of angles of crystallite rotations needed to
transform one interface into the other.
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Crystallographic description of grain interfaces in
polycrystalline materials is frequently based on macro-
scopic interface parameters.[1,2] In the recent past,
numerous sets of macroscopic grain boundary data
have been collected and analyzed; see, e.g., References
3–9 and references therein. These analyses require
identifying similar interfaces. For this purpose, a mea-
sure of interface similarity is needed. It is convenient to
assess the similarity using a formally defined metric or a
distance between interfaces. Although this is not always
explicitly stated in reports on large interface datasets,
the notion of a distance is fundamental for rigorous
analysis of the data. The distance is linked to volume in
the space of macroscopic parameters, and the volume in
turn is necessary for estimating frequencies of occur-
rence of different boundary types. In particular, the

interface distances are essential for determining the
frequencies based on the kernel density estimation.[8–10]

They are also crucial for interpolation of functions on
the space of macroscopic parameters; see, e.g.,
Reference 11. A number of distance functions have
been proposed in the past.[12–18] This paper introduces a
new metric with a simple geometric interpretation. The
distance between two interfaces represents a magnitude
of crystallite rotations needed for transforming one
interface into the other.
The macroscopic parameters of an interface between

two (centrosymmetric) crystals are given in the (Carte-
sian) reference frame of one of the crystals. They specify
the misorientation of the crystal on the other side of the
interface and the outward directed normal to the
interface plane. In description of homophase interfaces,
the cases with zero misorientation angles (‘‘no-boundary
singularity’’) are excluded from the macroscopic
domain. With M denoting a 3� 3 special orthogonal
matrix representing the misorientation and n1 being a
unit vector normal in the frame of the first crystal, the
pair ðM; n1Þ identifies macroscopically the interface
from the viewpoint of the first grain. From the view-
point of the second grain, this interface is represented by
the pair ðMT; n2Þ; where n2 ¼ �MTn1:

[12]

By definition, a metric space is a set of points with a
non-negative distance function d such that dðx; xÞ ¼ 0;
dðx; yÞ ¼ 0 implies x ¼ y (identity of indiscernibles),
dðx; yÞ ¼ dðy; xÞ (symmetry) and dðx; yÞ þ dðy; zÞ �
dðx; zÞ (triangle inequality) for every x, y and z.[19] A
distance function in the space of macroscopic parame-
ters needs to satisfy some additional symmetry condi-
tions. Generally, a physically unique interface has
multiple symmetrically equivalent representations in
the space of macroscopic parameters, and the distance
between given two points in that space must be equal to
the distance between their equivalents. The standard
approach is to construct an underlying (asymmetric)
distance function, and then to modify it to account for
symmetries.[12] One of the symmetries is applicable only
to homophase interfaces. It is referred to as the grain
exchange symmetry and corresponds to equivalence of
ðM; n1Þ and ðMT; n2Þ: Other symmetries are mandatory
and concern both homo- and hetero-phase interfaces.
With the assumed centrosymmetry of crystals, inversion
of the interface (plane and crystals) leaves the physical
configuration unchanged, but changes the macroscopic
parameters as the normal to the interface plane takes the
opposite direction. This ’interface inversion’ symmetry
corresponds to equivalence of ðM; n1Þ and ðM;�n1Þ:
One also needs to account for the rotational crystal
symmetries, i.e., the elements of the crystal point groups.
They can be easily dealt with using 4� 4 interface
matrices[12,15] of the type
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B ¼ 0 nT2
n1 M

� �
: ½1�

Let ti ( i ¼ 1; 2) be a special orthogonal matrix repre-
senting a rotation of the ith crystal, and let

Ti ¼ 1 0T

0 ti

� �
: ½2�

With a given interface matrix B, also T1BT
T
2 is an

interface matrix. The transformation of B to T1BT
T
2

corresponds to a concomitant change of orientations
of the first and second crystals by T1 and T2;
respectively. With Ti ¼ Ci representing an
element (proper rotation) of the point group of ith
crystal, the point C1BC

T
2 is symmetrically equivalent

to B.
It is easy to see that if B represents the interface from

the viewpoint of the first grain, then BT represents the
same interface from the viewpoint of the second grain.
The symbol B� will denote the interface ’inverted’ with
respect to B, i.e., with B corresponding to ðM; n1Þ , B�

corresponds to ðM;�n1Þ:
The focus below will be on two interfaces x and y

represented by the pairs ðMx; nx;1Þ and ðMy; ny;1Þ; or
equivalently, by the corresponding matrices Bx and By:
For defining the new distance function, the following
observation will be needed: For arbitrary interface
matrices Bx and By; there exist matrices T1 and T2 of
the form [2] such that

T1BxT
T
2 ¼ By; ½3�

T1 and T2 are not unique as Eq. [3] imposes five con-
ditions on six independent parameters (three parame-
ters per each rotation).

The definition of the new distance is based on
minimization of combined magnitudes of the rotations
Ti transforming Bx into By via Eq. [3]. The minimized
quantity is the sum of the angles xi of the rotations
represented by Ti

d Bx;By

� �
¼ min ðx1 þ x2Þ: ½4�

One might consider minimizing x1 þ x2 over multiple
parameters of Ti; but the result can be more simply
obtained by minimization over just one continuous
parameter and a discrete sign indicator. To demon-
strate this, let the axis of the rotation represented by t1
be along a unit vector m, and let the rotation angle
satisfy the conditions 0 � x1 � p: The matrix t1 has
the entries

tij1 ¼ dij cosx1 þmimjð1� cosx1Þ �
X
k

eijkm
k sinx1

½5�

where mi ( i ¼ 1; 2; 3) are components of m. Equa-
tion [3] implies that

t1nx;1 ¼ ny;1: ½6�

Thus, the vector m is in the plane spanned by the vec-

tors nk ¼ nx;1 þ ny;1 and n? ¼ nx;1 � ny;1: The position
of m can be specified by an angle, say a ( 0 � a � p),
and a sign indicator i ¼ �1

m ¼ n̂ki
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a

p
þ n̂? cos a; ½7�

where the hat ^ denotes vector normalization. Substi-
tution of t1 in ðt1nx;1Þ � ny;1 ¼ ny;1 � ny;1 ¼ 1 by [5] leads
to the dependence of cos a on x1

cos a ¼ cot x1=2ð Þ tan b=2ð Þ; ½8�

where b ¼ arccos nx;1 � ny;1
� �

: For given Bx and By; the
matrices T1 and t1 satisfying Eq. [6] depend only on
x1 and i; and since T2 ¼ B�1

y T1Bx; also the angle

x2 ¼ arccos TrðT2Þ=2� 1ð Þ is a known function of x1

and i; i.e., x2 ¼ x2ðx1; iÞ: Thus, the distance d can be
calculated by numerical minimization over continuous
x1 and discrete i

d Bx;By

� �
¼ min

x1; i
x1 þ x2 x1; ið Þð Þ; ½9�

where b � x1 � p and i ¼ �1:
With m given by [7], there are singularities at

nx;1 ¼ �ny;1: If nx;1 ¼ þny;1; then m ¼ inx;1; the mini-
mum of x1 þ x2 x1; ið Þ is at x1 ¼ 0; and the distance is

d Bx;By

� �
¼ arccos Tr B�1

y Bx

� �
=2� 1

� �

¼ arccos Tr MT
yMx

� �
� 1

� �
=2

� �
:

½10�

In the case of nx;1 ¼ �ny;1; the angle x1 is fixed at p
and x2 is independent with the smallest value equal to
the angle between the vectors nx;2 ¼ �MT

xnx;1 and
ny;2 ¼ �MT

y ny;1; i.e.,

d Bx;By

� �
¼ pþ arccos nx;2 � ny;2

� �
½11�

In practice, a simple way to overcome the problem
with nx;1 ¼ �ny;1 is to use the property [16] given
below.
Demonstrating that d complies with the conditions for

the distance function and the interface symmetry
requirements is slightly tedious but straightforward.
Clearly, dðBx;BxÞ ¼ 0 as the corresponding form of
Eq. [3] is satisfied by T1 ¼ I ¼ T2 (I is the 4� 4 identity
matrix) and both x1 and x2 take the smallest possible
value of zero. By similar arguments, d is shown to satisfy
the identity of indiscernibles; the condition
dðBx;ByÞ ¼ 0 implies that both x1 and x2 are zero,
which means that both T1 and T2 are the identity
matrices, and Eq. [3] leads to Bx ¼ By: The symmetry
dðBx;ByÞ ¼ dðBy;BxÞ follows directly from the facts that

the angles of the mutually inverse rotations Ti and TT
i

are equal and that Eq. [3] implies Bx ¼ TT
1ByT2: To

METALLURGICAL AND MATERIALS TRANSACTIONS A



show the triangle inequality, one needs to recall that the
angle of rotation constitutes a distance in the space of
rotations. Let the distance function be called -: For a
rotation X by the angle xX; one has xX ¼ -ðX; IÞ:
Moreover, -ðXY; IÞ ¼ -ðX;YTÞ for arbitrary rotations
X and Y. To a given pair Bx; By corresponds a pair of
rotations T

yx
1 ; Tyx

2 satisfying Eq. [3] and such that their
rotation angles x1 and x2 minimize the sum x1 þ x2:
There are also analogous matrices T

zy
i and Tzx

i corre-
sponding to the pairs By; Bz and Bx; Bz; respectively.
One can write

d Bx;By

� �
þ d By;Bz

� �
¼ -ðTyx

1 ; IÞ þ -ðTyx
2 ; IÞ

þ -ðTzy
1 ; IÞ þ -ðTzy

2 ; IÞ:
½12�

As the angle of a rotation is equal to the angle of its
inverse, the above sum can be written in the form

-ðTyx
1 ; IÞ þ - T

zy
1

� �T
; I

� �
þ -ðTyx

2 ; IÞ þ - T
zy
2

� �T
; I

� �
;

and since - satisfies the triangle inequality, this quan-
tity is not smaller than

- T
yx
1 ; T

zy
1

� �T� �
þ - T

yx
2 ; T

zy
2

� �T� �

¼ -ðTzy
1 T

yx
1 ; IÞ þ -ðTzy

2 T
yx
2 ; IÞ:

½13�

Now, since T
zy
1 T

yx
1 Bx T

zy
2 T

yx
2

� �T¼ Bz ¼ Tzx
1 Bx Tzx

2

� �T
;

the above sum is not smaller than the minimal

-ðTzx
1 ; IÞ þ -ðTzx

2 ; IÞ ¼ d Bx;Bzð Þ: ½14�

Hence, d Bx;By

� �
þ d By;Bz

� �
is not smaller than

d Bx;Bzð Þ: This shows that d is a distance function.
The distance function d is invariant with respect to

symmetry operations on the space of macroscopic
parameters. First, if T1 and T2 transform Bx to By as
in Eq. [3], the same matrices also transform B�

x to B�
y ;

i.e., T1B
�
x T

T
2 ¼ B�

y : Hence, the minimum of the sum of

the angles xi is in both cases the same and

dðB�
x ;B

�
y Þ ¼ dðBx;ByÞ; ½15�

i.e., the ’interface inversion’ is an isometry with respect
to d. Second, if T1 and T2 transform Bx to By as in

Eq. [3], the matrices T2 and T1 transform BT
x to BT

y ;

i.e., T2B
T
xT

T
1 ¼ BT

y : Hence,

dðBT
x ;B

T
y Þ ¼ dðBx;ByÞ; ½16�

i.e., the grain exchange is an isometry with respect to
d. Third, if T1 and T2 transform Bx to By as in Eq. [3],

the matrices C1T1C
T
1 and C2T2C

T
2 transform C1BxC

T
2

to C1ByC
T
2 : The angle of the rotation CiTiC

T
i is equal

to that of the rotation Ti: Hence, one has

dðC1BxC
T
2 ; C1ByC

T
2 Þ ¼ dðBx;ByÞ; ½17�

i.e., the symmetry transformation B ! C1BC
T
2 is an

isometry with respect to d.
With the above described underlying distance func-

tion d, the proper distance accounting for the interface
symmetries has the form

~d Bx;By

� �
¼ min

i
d Bx;SiðByÞ
� �

; ½18�

where Si is the ’interface inversion’ symmetry or one of the
rotational symmetries (C1BC

T
2 ) or (if applicable) the grain

exchange symmetry or a composition of these
symmetries.[15]

The distance function d is naturally linked to orienta-
tions of crystallites and has a simple interpretation: if one
of the crystals forming an interface is rotated, the new
configurations deviates from original one by the angle of
the rotation, i.e., with T representing an arbitrary rotation
by x; one has dðB;TBÞ ¼ dðB;BTTÞ ¼ x:
The function d is similar to themetric dAngle ofOlmsted,[14]

but differently than in the case ofOlmsted’s distance, there is
no need use coordinates such that the boundary plane is
given by z ¼ 0; and there is no ambiguity in macroscopic
interface representation (embodied in the Olmsted’s U
matrix[14]). It is also worth noting that in general the

p-norm-based functionsmin xp
1 þ xp

2

� �1=p
(p>1)also satisfy

the conditions for the underlying interface distance.
To give explicit examples, distances for two special

pairs of interfaces listed in Reference 16 are calculated
and juxtaposed with results of other methods. In the first
example (Ex. 1), the misorientations Mx and My corre-

spond to rotations about ½0 1 0�T by the angles
2 arctanð1=5Þ and 2 arctanð1=2Þ; respectively,

nx;1 / ½1 0 5�T and ny;1 / ½1 0 2�T: In the second exam-

ple (Ex. 2), Mx ¼ My is the rotation about ½1 1 0�T by

arctanð1=3Þ; nx;1 / ½3 1 2�T and ny;1 / ½7 � 1 2�T:
Table I lists the values of the distance d between
ðMx; nx;1Þ and ðMy; ny;1Þ along the distances v of
Reference 12, Eq. 3, dAngle of Reference 14, D12 of
Reference 16, Eq. 4.3, XAB;CD of Reference 18, Eq. 22.
For a more complete comparison of all known interface
distance functions, the reader is referred to the forth-
coming article.[20] The article also describes an alterna-
tive (analytical) method for calculating the distance d.
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Table I. The Distances v; dAngle; D12; XAB;CD and d between

example interfaces of Ref. [16]

Ex. 1 Ex. 2

v
ffiffiffi
5

p
d1 d2

dAngle 2d1 2d2
D12 2d1 d3
XAB;CD d1 d2
d 2d1 2d2

The quantities di ði ¼ 1; 2; 3Þ are di ¼ arccosðuiÞ=2; where
u1 ¼ 56=65; u2 ¼ 33=63; and u3 ¼ 37=63.
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production in any medium, provided you give appro-
priate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and
indicate if changes were made.
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