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Standard diffraction-based measurements of elastic strains in polycrystalline

materials rely on shifts of Bragg peaks. Measurement results are usually given in

the form of a single tensor assumed to represent the average stress in the

material, but the question about the true relationship between the tensor and

the average stress generally goes without notice. This paper describes a novel

procedure for analysis of data obtained from such measurements. It is applicable

in cases when spatial correlations in the material are ignored and statistical

information about the polycrystalline specimen is limited to texture-related

intensity pole figures and strain pole figures. A tensor closest to auxiliary strain

tensors linked to the results of measurements in particular specimen directions is

considered to represent the strain state. This tensor is shown to be a good

approximation of the average strain tensor. A closed-form expression allowing

for its direct computation from experimental pole figures is given. The

performance of the procedure is illustrated using simulated data.

1. Introduction

Stresses in polycrystalline materials, in particular residual

stresses present despite the absence of external loads, are

frequently determined using X-ray or neutron diffraction

techniques. A typical measurement of stresses of the first kind

relies on determining shifts of Bragg peaks for various direc-

tions of the scattering vector with respect to the specimen. The

shifts are directly related to the average distances between

lattice planes perpendicular to the scattering vector, and the

distances are a basis for determining the stresses (Macher-

auch, 1966; Noyan & Cohen, 1987). In the simplest approach,

stress is calculated from the slope of a line fitted to points

representing measured interplanar spacings versus sin2  ,

where  is the angle between the scattering vector and the

normal to the specimen surface.

Measurement results are presented as selected components

of a tensor tacitly assumed to represent the average stress in

the material. However, despite the apparent simplicity of this

approach, the issue of the equality between the measured

stress tensor and the average stress tensor is complex, and it is

usually left unconsidered (Noyan & Cohen, 1987). Computing

a single tensor representing the stresses from measured lattice

strains requires a grain interaction model. In general, such

models are formally described by infinite perturbation series

with terms involving non-local integral operators and spatial

correlations (see e.g. Beran & McCoy, 1970; Kröner, 1986; and

references therein). In practice, under the assumption of

random spatial correlations, simple local approximations are

used, and the operators are reduced to ordinary tensors. With
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such a local approximation, differences in microstructures are

neglected, and effective properties are influenced only by

crystallographic textures. In other words, only orientation

density functions are needed for averaging. Even with this

approximation, various averaging methods can be used, from

the simplest Voigt and Reuss averages (based on the

assumptions of constant strain and stress, respectively) to

more sophisticated schemes conforming with the assumption

of local approximation (Bollenrath et al., 1967; Dölle, 1979; de

Wit, 1997). In the conventional stress determination, the

Reuss model is usually assumed. More complex models have

also been considered (see e.g. van Leeuwen et al., 1999; Leoni

et al., 2001; Liu et al., 2010), but in most analyses spatial

correlations are ignored.

To avoid choosing the averaging scheme, a simpler problem

is discussed below: instead of determining the stress tensor,

only the computation of a representative strain tensor is

considered. Thus, within the local approximation, the question

is about the relationship between the measured constant strain

tensor, denoted below by "M, and the average strain h"i of the

crystal lattice, or how to process strain measurement data in

order to get "M close to h"i.
The tensor "M is determined by a linear optimization

problem. Abandoning the simplistic sin2  method in favor of

a more inclusive fitting was advocated by Ortner (2008, 2009).

The procedure described below is a generalization of the

method proposed by Winholtz & Cohen (1988) to the case of

non-random orientation distribution. In the presence of a

strong crystallographic texture, the fitting gives "M close to the

average strain only if the strain measurements in particular

directions are weighted by the radiation intensities in these

directions, i.e. by the corresponding texture-related pole

figures. A closed-form expression for "M involves experi-

mental intensity pole figures and strain pole figures.

The paper begins with basics about the change of the

scattering vector caused by straining a crystal and about the

representation of crystallite orientations. Next, a procedure

for obtaining "M is described for a theoretical case. So defined,

"M is shown to be equal to h"i if certain undetectable strains

are ignored. Then, it is demonstrated that some experimen-

tally accessible data can be processed in an analogous way. At

the outset, the case of a single reflection is dealt with. The

generalization to multiple reflections is given later on. Finally,

the new approach is applied to special textures and to some

simulated data. It is assumed throughout the paper that the

diffraction data are collected from a representative volume of

a statistically homogeneous polycrystalline material. The

reference lattice parameters are assumed to be known, and the

crystal structure is assumed to have a center of inversion.

2. Basics

2.1. Shift of a Bragg peak

Let I denote the identity tensor, i.e. Iij = �ij, where � is the

Kronecker delta. If a small deformation of a crystal is

described by the deformation gradient tensor I þ ", then a

vector h of the crystal reciprocal lattice is transformed to

h0 ¼ ðI � "Þh: ð1Þ
Let lc denote the unit vector along h; in this context, lc is meant

to be referred to the crystal reference frame. The same vector

will be denoted by l when referred to the specimen reference

frame. The squared ratio of magnitudes of h0 and h can be

expressed as h02=h2 ’ 1 � 2 "c
ij l

c
i l

c
j , where "c

ij are components

of " in the crystal coordinate system. Under the assumption

that the magnitudes of close scattering vectors are similar, the

magnitude of h0 is measured in the proximate direction of h.

The (single-crystal) strain

esc ¼ "c
ij l

c
i l

c
j ð2Þ

is directly linked to the change of the lattice plane spacing and

the shift of the Bragg peak:

esc ’ 1

2
1 � d2

d02

� �
’ d0 � d

d
’ �ð�0 � �Þ cot �; ð3Þ

where d ¼ 1=jhj and d0 ¼ 1=jh0j are interplanar spacings, and �
and �0 are Bragg angles corresponding to h and h0, respectively.

2.2. Crystallite orientation

Crystallite orientations are described here using standard

conventions of texture analysis (Bunge, 1982; Morawiec,

2004). An orientation is determined by a special orthogonal

matrix g or by Euler angles ’1; �; ’2, and there is a relation-

ship between the angles and the matrix g ¼ �ð’1; �; ’2Þ. The

formula for � can be found in numerous articles and books

(Bunge, 1982; Morawiec, 2004); for completeness it is also

listed in Appendix A. The matrix g links vector components in

Cartesian reference frames attached to the crystal and the

specimen. In particular, with li being components of l in the

specimen coordinate system, one has

lci ¼ gij lj: ð4Þ
The measurement of strain in the direction l with the use of the

reflection h / lc involves crystallites with orientations satis-

fying the above relationship.

By convention, the direction of the scattering vector is also

described by spherical angles  (polar angle in ½0; ��) and

’ (azimuth), i.e. ½l1; l2; l3� ¼ ½cos ’ sin ; sin ’ sin ; cos �.
Similarly, it can be expressed by spherical angles � and � in the

crystal reference frame, i.e. ½lc1; lc2; lc3� ¼ ½cos� sin �; sin � sin �;
cos��. The matrix representing the rotation transforming li to

lci can be decomposed into the product

g ¼ gcðlcÞ gzð�Þ gsðlÞ; ð5Þ
where gcðlcÞ ¼ �ð0; �; �=2 � �Þ, gzð�Þ ¼ �ð0; 0; �Þ and

gsðlÞ ¼ �ð�=2 þ ’;  ; 0Þ. One can easily verify that gs
ij lj ¼ �i3,

gzij �j3 ¼ �i3 and gc
ij �j3 ¼ lci , i.e. equation (4) is satisfied (Mora-

wiec & Pospiech, 1989). In the above decomposition, lc is fixed

by the choice of diffracted reflection. The crucial point is to

notice that, with a given reflection, the crystal orientation can

be parametrized by the angles  , ’, �, or briefly, by the

pair ðl; �Þ.
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An orientation density function (ODF) will be denoted by

f ¼ f ðgÞ. Assuming a particular reflection is considered, f can

be seen as a function of ðl; �Þ, i.e. by abuse of notation,

f ¼ f ðl; �Þ. By definition, the ODF is normalized to one, i.e.R
g f ðgÞ ¼ 1 ¼ R

l

R
� f ðl; �Þ, where the abbreviated symbol

R
x

denotes integration over the complete domain of x. The

domain of g consists of all special orthogonal matrices, and the

domains of l and � are the unit sphere and the unit circle,

respectively. The explicit forms of
R
� and

R
l are ð2�Þ�1

R 2�

0 d�
and ð4�Þ�1

R 2�

0 d’
R �

0 d sin , respectively, and
R
g can be

expressed via
R
l

R
� .

For a given reflection, the integral of f ðl; �Þ over � repre-

sents an unreduced (this term is used in literature on repro-

ducibility of ODFs from pole figures; see e.g. Matthies &

Wenk, 1985) pole figure p at l, i.e.R
�

f ðl; �Þ ¼ pðlÞ: ð6Þ

This definition implies that
R
l pðlÞ ¼ 1. For simplicity, it is

assumed below that pðlÞ 6¼ 0 for all l. The value of the pole

figure p at l represents the frequency of occurrence of crys-

tallite orientations with the scattering vector along l. For these

particular crystallites, i.e. for a given l, the frequency of

occurrence of crystallite orientations with various � angles will

be denoted by

qlð�Þ ¼ f ðl; �Þ=pðlÞ: ð7Þ
Clearly, also the functions ql are normalized to one:R
� qlð�Þ ¼ 1.

3. Strain pole figures and average strain

With a given vector l and variable angle �, only crystallites

with orientations ðl; �Þ contribute their strains esc to the

polycrystalline strain eðlÞ. The latter quantity is the average of

escðl; �Þ weighted by the frequency of occurrence qlð�Þ of

orientations along �:

eðlÞ ¼ R
�

qlð�Þ escðl; �Þ ¼ R
�

qlð�Þ "ijðl; �Þ li lj ¼ "t
ijðlÞ li lj; ð8Þ

where "ij and "t
ij are components of " and

"tðlÞ ¼ R
�

qlð�Þ "ðl; �Þ ð9Þ

in the specimen reference system (cf. Van Houtte & De

Buyser, 1993). The tensor "t(l) is the average of the actual

strain " ¼ "ðl; �Þ in crystallites contributing to e at l. The

function e ¼ eðlÞ represents an (unreduced) strain pole figure.

The strain pole figure is the basis for determining the strain

tensor "M. Similarly to the average strain h"i ¼ R
g f ðgÞ "ðgÞ, the

tensor "M is assumed to describe the state of the sample as a

whole. The task is to devise a method of processing eðlÞ so the

resulting "M would come close to the actual strain in the

material and to h"i. Here, the tensor "M is assumed to be as

close as possible to the function "m ¼ "mðlÞ linked to known

eðlÞ in the same way as "tðlÞ [see equation (8)]. Formally, "M is

defined as

"M ¼ arg"X min
"X ;"m

R
l

pðlÞ k"X � "mðlÞk2 ð10Þ

subject to "m
ij ðlÞ li lj ¼ eðlÞ, where k � k denotes the Frobenius

norm (kxk2 ¼ xijxij). The weighting by the pole figure p is

needed to account for different populations of crystallites

contributing to "m at particular l and, consequently, for

differences in their influence on the strain state.

It remains to get a closed-form expression for "M, and to

investigate the link between "M and h"i. With 	ðlÞ being a

Lagrange multiplier, conditions for extrema of the "X - and

"m-dependent integral
R
l pðlÞ k"X � "mðlÞk2 þ 2

R
l pðlÞ	ðlÞ �

½"m
ij ðlÞ li lj � eðlÞ� have the form

"M ¼ R
l

pðlÞ "mðlÞ and "m
ij ðlÞ ¼ "M

ij þ 	ðlÞ li lj; ð11Þ

where "X was replaced by "M. With the condition

"m
ij ðlÞ li lj ¼ eðlÞ, the second of equations (11) gives

	ðlÞ ¼ eðlÞ � "M
ij li lj and

"m
ij ðlÞ ¼ "M

ij þ eðlÞ � "M
kl lk ll

� �
li lj: ð12Þ

Replacement of "mðlÞ in the first of equations (11) by the

above expression leads to 
ij ¼ AC
ijkl"

M
kl , where


ij ¼
R
l

pðlÞ eðlÞ li lj and AC
ijkl ¼

R
l

pðlÞ li lj lk ll: ð13Þ

Hence, the sought strain tensor "M of equation (5) is given by

"M ¼ AS 
: ð14Þ
Here, AS is the inverse of AC in the same sense as a compli-

ance tensor is the inverse of the corresponding stiffness tensor,

i.e. ACAS ¼ Ið4Þ, where I
ð4Þ
ijkl ¼ ð�ik�jl þ �il�jkÞ=2. If AC happens

to be singular, AS is its pseudoinverse (Ben-Israel & Greville,

2003). Note that "M also solves the simpler optimization

problem

"M ¼ arg min
"X

R
l

pðlÞ "Xij li lj � eðlÞ� �2
; ð15Þ

which is a generalization of that described by Winholtz &

Cohen (1988) to cases with non-uniform orientation distri-

butions.1 The procedure based on the more complex equation

(10) additionally provides formula (12) for "m. The auxiliary

tensor "mðlÞ has a simple interpretation as an approximation of

the actual "tðlÞ. The latter can be expressed as

"tðlÞ ¼ "mðlÞ þ "dðlÞ, where "dðlÞ has no impact on eðlÞ [as

"d
ijðlÞ li lj ¼ 0] and, consequently, is inaccessible in the

measurement by the assumed reflection. Of all "t satisfying

equations (8) and (9), "t ¼ "m is the closest to the constant "M.

By the principle of parsimony, if one needs to choose "t, the

best approach is to take the simplest (closest to constant)

tensor "m. Thus, "m seen as an approximation of the actual "t is

optimal in the sense that there is no experimental information

for indicating a better tensor satisfying equations (8) and (9).
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1 Analogy to the paper of Winholtz & Cohen (1988) is complete
with a texture-comprising formula for ‘measured’ stress, �M ¼
arg min�X

R
l pðlÞ FijðlÞ �Xij � eðlÞ� �2

, where FijðlÞ denote the stress factors of
Dölle (1979). Similarly to the above expressions for "M, one has �M ¼ BS&,
where &ij ¼

R
l pðlÞ eðlÞFijðlÞ and BS is the inverse of BC

ijkl ¼
R
l pðlÞFijðlÞFklðlÞ.

With this formulation, one faces the problem of determining the stress factors.
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Moreover, the auxiliary "m is convenient for showing the link

between the average strain and the strain tensor "M defined by

equation (10). The average h"i is equal to the integral of "t

weighted by p:

h"i ¼ R
g

f ðgÞ "ðgÞ ¼ R
l

R
�

pðlÞ qlð�Þ "ðl; �Þ ¼
R
l

pðlÞ "tðlÞ; ð16Þ

and the first of equations (11) gives

h"i ¼ "M þ R
l

pðlÞ "dðlÞ: ð17Þ

Generally, the second term is nonzero, and there is an ambi-

guity in determination of the average strain h"i. If the

experimentally inaccessible part of "t is neglected ("d ¼ 0),

one has h"i ¼ "M.

4. Strain from experimental data

The strains eðþlÞ and eð�lÞ are generally different. This

follows directly from equation (8) and the observation that the

integration path ðl; �Þ with a fixed l and variable � is different

from the path ð�l; �Þ. On the other hand, it is important to

recall that measurements of strain rely on the geometry of

diffraction and the crystal lattice. The latter is always centro-

symmetric, and a conventional diffraction-based measurement

for a reflection h is inseparable from that for �h. In real

experiments, all crystallites with +h or �h along l contribute to

the shift of Bragg peaks measured at l, and the measured

strain equals

~eeðlÞ ¼ eðþlÞ þ eð�lÞ
2

¼ ~"" t
ijðlÞ li lj: ð18Þ

Thus, the obtainable strain pole figure ~ee is the even component

of e. Experimental figures of this type recoded in various

research contexts are reported elsewhere (see e.g. Maurer et

al., 1988; Perlovich et al., 1997; Larsson et al., 2004; Pang et al.,

2006; McNelis et al., 2013; Wielewski et al., 2017).

A diffraction-based measurement of texture-related pole

figures goes beyond the geometry as it involves peak inten-

sities. However, an experimental pole figure ~pp recorded at l

has contributions from crystallites with orientations g satis-

fying �lci ¼ gij lj, and thus

~ppðlÞ ¼ pðlÞ þ pð�lÞ
2

; ð19Þ

i.e. the measured pole figure ~pp is the even part of p (Matthies,

1979; Matthies & Wenk, 1985).

Let ~""M denote the strain tensor to be determined from

experimental data ~eeðlÞ. This tensor is expected to approximate

the function ~""m ¼ ~""mðlÞ linked to known ~eeðlÞ, and similarly to

equation (10), one can define it as

~""M ¼ arg ~""X min
~""X ; ~""m

R
l

~ppðlÞ k ~""X � ~""mðlÞk2 ð20Þ

subject to ~""m
ij ðlÞ li lj ¼ ~eeðlÞ. Proceeding as in the case of equa-

tion (10), one obtains

~""M ¼ ~AAS ~

; ð21Þ

where ~AAS is the (pseudo)inverse of ~AAC, ~

ij ¼
R
l ~ppðlÞ ~eeðlÞ li lj and

~AAC
ijkn ¼

R
l ~ppðlÞ li lj lk ll. However, the analogy breaks down at

equation (17). On the one hand

~""M ¼ R
l

~ppðlÞ ~""mðlÞ ð22Þ

and on the other

h"i ¼ R
l

~ppðlÞ ~"" tðlÞ þ R
l

p̂pðlÞ "̂" tðlÞ; ð23Þ

where p̂p ð¼ p� ~ppÞ and "̂" t ð¼ "t � ~"" tÞ denote odd components

of p and "t, respectively. Thus, ~""M additionally differs from h"i
by the integral

R
l p̂pðlÞ "̂" tðlÞ. The latter vanishes if one of the

functions p or "t is even.

If the point group of the crystal contains a proper rotation c

such that ch ¼ �h then this symmetry operation transforms

the integration path ðl; �Þ to the path ð�l; �Þ (Morawiec &

Pospiech, 1989), the functions p and e are even, and one has
~""M ¼ "M. The relationship ch ¼ �h is true if h is perpendi-

cular to a twofold axis of symmetry, and many strong reflec-

tions of most common structures satisfy this condition. For

example, in the case of cubic metals, these are the hk0- and

hhk-type reflections.

In conclusion, the evenness of experimentally accessible

pole figures complicates the relationship between the tensor
~""M and the average strain h"i. However, for a reflection h such

that ch ¼ �h, one gets the strain tensor satisfying ~""M ¼ "M. In

what follows, it will be assumed that only such reflections are

used, and the tilde will be omitted. The practical importance of

the complication caused by evenness of experimental pole

figures in cases with high crystal symmetries and weak textures

is low, but as in texture analysis (Matthies, 1979; Matthies &

Wenk, 1985), being aware of this issue and understanding its

impact is essential for interpretation and processing of pole

figure data.

5. Using multiple pole figures

If multiple reflections are considered, one needs to add a sum

over the reflections in front of the integrals in equations (10)

and (15), and the pole figures p and e need an extra index

indicating the reflection, i.e. one has ph and eh. In this notation,

the final equations (13) take the form


ij ¼
P
h

R
l

phðlÞ ehðlÞ li lj and AC
ijkl ¼

P
h

R
l

phðlÞ li lj lk ll;

ð24Þ
and as above, the strain tensor "M equals AS
, where AS is the

(pseudo)inverse of AC. Analogously to equation (17), one has

h"i ¼ "M + an indeterminable part which is an arithmetic

mean of
R
l phðlÞ "d

hðlÞ over the reflections. The strain tensors

determined from individual reflections are based on different

sets of accessible information, and in effect they are generally

different. With multiple reflections, the number of different

projections eh of " becomes larger, and "M obtained from

multiple reflections is expected to be closer to h"i than those

obtained from individual reflections.
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In order to apply the above formalism to experimental data,

two features of actual measurements must be taken into

consideration. First, a typical X-ray measurement does not

cover the complete hemisphere but only a part of it. There-

fore, the integrals in the "M-defining formulas (10)–(13) and

(24) must be modified. Instead of integrating over the whole

sphere, the region of integration must be limited to the

intersection of the experimentally accessible domains of the

pole figures ph and eh. Second, the experimental data are not

continuous but discrete, i.e. one actually has some discretely

distributed ehðlnÞ and phðlnÞ (n ¼ 1; . . . ;N) instead of contin-

uous ehðlÞ and phðlÞ. One can deal with such data by standard

techniques of texture analysis, e.g. by expansion into spherical

harmonics (Bunge, 1982), or using the ‘direct’ method with the

integrals over l replaced by sums over n, and with phðlnÞ
incorporating the spherical area represented by ln. In relation

to the latter approach, one should be warned of the idea that

‘one is absolutely free in choosing the ’; pairs (measure-

ment directions)’ (Ortner, 2009); with the discrete approach

and spherical areas ignored, a non-uniform density of

measurement directions will act like an artificial non-uniform

intensity pole figure, and it may bias the resulting "M.

Note here that the expression for "M does not involve the

orientation density function f. With an incomplete pole figure

p, the pole figure normalization factor in expressions for AC

and 
 in equations (13) would not be known, but it is the same

in both cases and cancels out when "M is calculated. However,

this does not occur if multiple incomplete pole figures ph and

equations (24) are used. In practice, the normalization coef-

ficients can be estimated on the basis of the range of  angle,

and having slightly inaccurate normalization coefficients

implies slightly different contributions of particular pole

figures to "M. The orientation density function f is necessary

only if accurate normalization coefficients of the incomplete

pole figures are needed.

6. Examples

To assess the method’s performance, it is applied to some

particular cases. The first subsection concerns special textures:

uniform orientation distribution and an infinitely sharp

texture corresponding to a single crystal. An application to

some simulated data is given in the second subsection.

6.1. Special textures

6.1.1. Uniform orientation distribution. The uniform

distribution of orientations [f ðgÞ ¼ 1] implies a uniform

distribution of directions [pðlÞ ¼ 1]. If vectors l are uniformly

distributed over the complete sphere, AC is given by

AC
ijkl ¼

R
l li lj lk ll ¼ 1

15 �ij�kl þ 2I
ð4Þ
ijkl

� �
; ð25Þ

or using the abbreviation iso defined by Morawiec (1994), it

can be expressed as AC ¼ isoð1=3; 2=15Þ. Hence, its inverse AS

equals isoð3; 15=2Þ, or explicitly

AS
ijkl ¼ 3

2 5I
ð4Þ
ijkl � �ij�kl

� �
: ð26Þ

With 
ij ¼
R
l eðlÞ li lj, one gets

"M
ij ¼ 3

2

R
l

eðlÞ 5li lj � �ij
� 	

: ð27Þ

If multiple strain pole figures eh are used, eðlÞ must be replaced

by the arithmetic average of ehðlÞ. This is the explicit contin-

uous form of the discrete solution of Winholtz & Cohen

(1988), listed as equation (9) in that article.

6.1.2. Single-component infinitely sharp texture. For

simplicity, let the crystal symmetry be C2h (2=m), and let h be

perpendicular to the symmetry axis (this is to have even pole

figures and to avoid discussing the complication described in

x4). Let the ODF have just two infinitely high peaks at g ¼ g0

and the symmetrically equivalent orientation cg0, and a

negligible but nonzero background [in order to have pðlÞ 6¼ 0

obeyed]. The intensity pole figure p of the type h / lc has

infinitely high peaks at l ¼ �l0, where l0i ¼ g0
ji l

c
j . The strain

pole figure e is reliably determinable only at l ¼ �l0. With

such p and e, the formulae (13) give

AC
ijkl ¼ l0i l

0
j l

0
k l

0
l and 
ij ¼ eðl0Þ l0i l0j : ð28Þ

The above AC is singular, and its pseudoinverse equals AC, i.e.

AS ¼ AC. Hence, the strain tensor "M calculated using equa-

tion (14) is

"M
ij ¼ eðl0Þ l0i l0j : ð29Þ

This result has a simple interpretation: In directions l inclined

to l0 by an angle �, the estimated strain "M
ij li lj equals

eðl0Þ cos2 �. Thus, even though the strain data are limited to the

single point l0, the strain "M
ij li lj agrees with the measurement

result at that point ["M
ij l

0
i l

0
j ¼ eðl0Þ], and it vanishes in direc-

tions perpendicular to l0.

The comparison of the two extreme cases considered in

xx6.1.1 and 6.1.2 shows the impact of texture. If the weighting

by the intensity pole figure were ignored and the uniform

ODF was assumed when the actual texture has an infinitely

sharp component, the tensor "M resulting from equation (27)

for data restricted to eðl0Þ would be determined by the unre-

liable shape of eðlÞ for l other than �l0.

6.2. Example texture of moderate sharpness

This section shows the results of application of the

described method to a more realistic model. The model is

based on an assumed orientation density function f ¼ f ðgÞ and

a strain function " ¼ "ðgÞ. The example illustrates the level of

ambiguity in determination of the average strain in the case of

a relatively weak texture. It also demonstrates how the

deviation between the calculated and average strain tensors is

affected by the use of multiple pole figures and by the

incompleteness and discreteness of pole figure data. The

results are not affected by any experimental errors.

6.2.1. Model. The explicit expression for the model ODF

shown in Fig. 1 is
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f ðgÞ ¼ 0:12291237
P
i;j

exp 12 Trðci g0 sj g
TÞ� �
=1014 þ 1

( )
; ð30Þ

where g0 ¼ �½arcsecð51=2Þ; arccosð2=3Þ; arcsecð51=2Þ�, and the

sum is over the (24) cubic crystal and (4) orthorhombic sample

symmetry operations ci and sj, respectively. (Because of the

specific choice of g0, the sample symmetry with respect to

orientations is cubic.) In the parlance of texture analysis, the

ODF consists of a single component at f212gh221i, with the

peak modeled by a symmetric von Mises–Fisher distribution

(Morawiec, 2004). This function is similar to the Santa Fe

model of Matthies (1988), which is known to have nonzero

odd coefficients in the expansion into generalized spherical

harmonics, and in consequence, some unreduced intensity

pole figures have nonzero odd components. The model of the

strain field is given by

"ðgÞ ¼ gT map a; g "0 g
T

� �
g; ð31Þ

where "0 ¼ diag½5;�4;�1� (in arbitrary units, e.g. in 10�4),

aðxÞ ¼ sgnðxÞ lnð1 þ jxjÞ is an attenuation function of a real

variable and map½a;X� denotes the matrix obtained by

application of a to each entry of X. Both f and " are symmetric

with respect to the crystal symmetry, i.e. f ðc gÞ ¼ f ðgÞ and

"ðc gÞ ¼ "ðgÞ. With s being a proper rotation of the specimen

symmetry group, one has f ðg sÞ ¼ f ðgÞ and "ðg sÞ ¼ s "ðgÞ sT.

The functions f and " give the average strain tensor

h"i ¼ R
g

f ðgÞ "ðgÞ ¼ diag½2:405;�1:940;�0:515�: ð32Þ

The non-diagonal entries of the above tensor and the "M

tensors below are all 0.000.

6.2.2. Results. The complete f110g intensity pole figure

(calculated from the model ODF) and the f110g strain pole

figure (calculated from the model ODF and the model strain

field) are shown in Figs. 2 and 3, respectively. The tensor

obtained by application of equation (14) to this pair of

complete pole figures equals

"M ¼ diag½2:389;�1:928;�0:511�: ð33Þ
The magnitude k"dk of the inaccessible part "d of the actual "t

for the f110g reflection is shown in Fig. 4. It takes its largest

values at the rim of the figure, where the strain pole figure has

extrema. The magnitude of the deviation between "M and the

actual h"i is kh"i � "Mk ¼ k Rl pðlÞ "dðlÞk ¼ 0:021. The calcu-

lations were also carried out for discrete data from incomplete

pole figures. With the f110g pole figures given on the grid of

directions shown in Fig. 5, one gets

"M ¼ diag½2:354;�1:859;�0:520�: ð34Þ
The other pairs of pole figures used in this example are f100g,
f111g and f311g. The relative deviations � ¼ kh"i � "Mk=
kh"ik between h"i and "M obtained from individual pairs of

intensity and strain pole figures are collected in Table 1. The

deviation is to some extent linked to the multiplicity of the

reflection. [Here, it is the number of the proper crystal point
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Figure 2
The f110g intensity pole figure calculated from the orientation density
function shown in Fig. 1. The minimal and maximal values are 0.22 and
1.92, respectively, and the isolines are 0.5, 0.8, 1.0, 1.3, 1.6 and 1.9. The
filled black circle marks one of the maxima.

Figure 1
Model orientation density function. The isolines are 0.5, 1.0, 2.0, 3.0, 4.0
and 5.0.
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group operations that leave �h unchanged. The multiplicities

of f100g, f110g, f111g and f311g are 8, 4, 6 and 2, respectively.]

The larger the multiplicity, the smaller the number of distinct

integration paths (determined by fixed l and varying �), and

the larger the deviation.

With four pairs of complete pole figures f100g, f110g, f111g
and f311g used together, equations (24) give

"M ¼ diag½2:411;�1:944;�0:516�; ð35Þ
deviating from the average strain tensor h"i by � ¼ 0:002.

Similarly, the discrete data of four pairs of incomplete pole

figures (each given on the grid shown in Fig. 5) lead to

"M ¼ diag½2:409;�1:959;�0:511�; ð36Þ
which deviates from the average strain tensor by � ¼ 0:006.

The simultaneous use of four pairs of pole figures gives the

deviation � reduced roughly by an order of magnitude

compared to the average of deviations for individual pairs. In

all cases, the incompleteness of data has a significant impact on

the results because, in the considered model, the principal
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Figure 4
The magnitude k"dk of the deviation between the actual "t and "m for the
reflection {110}. The unlabeled isolines correspond to 0.1. The filled black
circle marks the maximum of 0.45.

Figure 3
(a) The f110g strain pole figure calculated from the model strain function
" ¼ "ðgÞ and ODF shown in Fig. 1. The minimal and maximal values are
�2.01 and 2.36, respectively, and the isolines are 0, �0:5, �1:0, �1:5 and
�2:0. Filled black circles mark the maxima. (b) Some sin2  plots for the
f110g reflection.

Figure 5
The grid of directions l n on an incomplete pole figure. The spherical
angles of neighboring vectors differ by 9� in  or ’. Each l n represents a
9 � 9� cell in the domain  � ’. The spherical area of the cell is
ð�=10Þ sinð�=40Þ sin n, where  n is the polar angle of l n. For clarity, only
high- cells are drawn. From the viewpoint of spherical geometry the
vectors are close to but not exactly at the centers of the cells. With high
(low) density of nodes at small (large)  , the grid is clearly not optimal,
but it refers to conventional measurement strategies (steps in  for
fixed ’).
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information is concentrated at the rim of the strain pole

figures (cf. Fig. 3).

7. Final remarks

The paper describes a method of processing strains obtained

by determination of Bragg peak positions to get a constant

tensor best representing the average strain in textured poly-

crystalline materials. The input data are intensity pole figures

and strain pole figures. The procedure is a generalization of

that of Winholtz & Cohen (1988), and it is an alternative to

stress determination schemes stemming from the original

sin2  method. The sin2  -based approaches require fewer

data, but there is no clear relationship between their results

and the actual average stresses. The link between the result "M

of the presented procedure and h"i is more explicit. However,

despite the use of a general fitting method, the resulting tensor

"M is generally different from the average strain tensor h"i.
The level of discrepancy depends on the quantity of

measurement data, specifically, the number and range of pole

figures, and on the multiplicity of the corresponding reflec-

tions.

There is an additional complication caused by evenness of

experimental pole figures: generally, the difference between

"M and h"i is increased by a term involving experimentally

inaccessible odd parts of pole figures. With sufficiently high

crystal symmetry, this issue is concealed if the used reflection h

is equivalent to �h by a symmetry operation being a proper

rotation.

Clearly, the proposed formalism can also be applied to data

intended for simpler methods, e.g. the Dölle–Hauk method

(Hauk, 1997). It is enough to read these data as a strain pole

figure given on an ill-adapted grid, and to account for spherical

areas represented by particular grid points.

Note that strain pole figures can be used to estimate the

complete strain field " ¼ "ðgÞ (Behnken, 2000; Schuren et al.,

2012; McNelis et al., 2013), and hence the average strain tensor

can be obtained. This procedure, however, would be more

complex than that described above, and such a detour would

be additionally affected by ambiguities arising in strain-field

estimation (Van Houtte & De Buyser, 1993) or by constraints

imposed to eliminate them.

The new procedure is described in detail, but some related

issues have not been addressed. In particular, having a given

data set, it would be interesting to know how to get the actual

range of the indeterminable part of h"i (or the strains "d).

Another issue is how to estimate the impact of inaccessibility

of the odd parts of pole figures. These essentially mathematical

problems are beyond the scope of this paper. Also the subject

of getting average stress tensors from estimated average strain

tensors and the problem of determining effective elastic

constants are ignored. They are extensively discussed else-

where (see e.g. Beran & McCoy, 1970; Kröner, 1986; Mora-

wiec, 1994; and references therein).

APPENDIX A
Orientation matrix and Euler angles convention

A crystallite orientation is described by a special orthogonal

matrix g transforming vector components given in the Carte-

sian specimen reference system to the Cartesian crystal

reference system. The Euler angles ’1; �; ’2 determining the

orientation are related to the matrix g via

g ¼ �ð’1; �; ’2Þ ¼
c1c2 � s1s2c0 s1c2 þ c1s2c0 s2s0

�c1s2 � s1c2 c0 �s1s2 þ c1c2c0 c2s0

s1s0 �c1s0 c0

2
4

3
5;

ð37Þ

where si ¼ sin ’i, ci ¼ cos ’i, s0 ¼ sin� and c0 ¼ cos �. For

more on this and other orientation parameterizations used in

texture analysis, see Bunge (1982) and Morawiec (2004).
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