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Progress in experimental methods of serial sectioning and orientation

determination opens new opportunities to study inter-crystalline boundaries

in polycrystalline materials. In particular, macroscopic boundary parameters can

now be measured automatically. With sufficiently large data sets, statistical

analysis of interfaces between crystals is possible. The most basic and interesting

issue is to find out the probability of occurrence of various boundaries in a given

material. In order to define a boundary density function, a model of uniformity

is needed. A number of such models can be conceived. It is proposed to use

those derived from an assumed metric structure of the interface manifold. Some

basic metrics on the manifold are explicitly given, and a number of notions and

constructs needed for a strict definition of the boundary density function are

considered. In particular, the crucial issue of the impact of symmetries is

examined. The treatments of homo- and hetero-phase boundaries differ in some

respects, and approaches applicable to each of these two cases are described. In

order to make the abstract matter of the paper more accessible, a concrete

boundary parameterization is used and some examples are given.

1. Introduction

The analysis of inter-crystalline interfaces constitutes an

important area in the investigation of polycrystalline mate-

rials. Studies on sharp grain boundaries are frequently focused

on special boundaries, for example, specific tilt or twist

boundaries, low-angle boundaries, coincidence lattice (CSL)

boundaries, or particular orientation relationships for hetero-

phase interfaces. However, there are cases in which statistical

methods would be more appropriate. Such methods are

essential to quantify uncertainties and test hypotheses. Some

years ago, statistical analyses were practically limited to

misorientation angle distributions, misorientation distribu-

tions or frequencies of CSL boundaries. Recently, however,

grain boundaries have been studied in a more complete way,

for all possible grain misorientations and boundary inclina-

tions (see e.g. Saylor et al., 2003; Rohrer et al., 2006; Randle,

2008, and references therein). Concurrently, progress in

automatic serial sectioning and orientation determination

methods allows for analysis of large sets of boundaries

(Spowart, 2006; Rowenhorst et al., 2006). Particularly inter-

esting is the development of the scanning electron microscopy

technique combining a focused ion beam unit for serial

sectioning with electron backscatter diffraction for orientation

determination (Groeber et al., 2006; Uchic et al., 2006; Konrad

et al., 2006). With further advancement of these experimental

procedures, one may expect many more statistical studies of

general boundaries with all macroscopic boundary parameters

involved.

A proper formalism constituting a foundation for statistical

analysis of experimental misorientation and inclination data

requires geometric concepts beyond the classical Euclidean

geometry, and it also turns out to be more complicated than in

the related field of crystallographic textures. Below, we

consider essential aspects of such a formalism. For clarity, it is

necessary to start with familiar notions of interface research,

and link them to geometric structures added to the boundary

space. With these structures, tools intrinsic to the space can be

used to study interface data.

The notion of a ‘boundary distribution’ is central to the

statistical analysis of boundaries. The frequency of given

boundary types represented by a density function over the

macroscopic boundary parameters plays a role similar to that

of the ‘orientation distribution function’ in quantitative

texture analysis (e.g. Bunge, 1982). In order to define a

boundary distribution, a measure in the parameter space must

be specified. The measure in the boundary space, however, is

not unique, and thus, the boundary distribution depends on its

choice.1 This is different from the situation in textures, where

the practical (invariant) ‘volume element’ is distinctive. The

expression for a volume element can be derived from the

metric structure determining the distance between points

representing the degree of similarity of boundaries. Metrics

for the boundary space and the resulting measures are the

1 In other words, different models of uniformity lead to different statistical
results. For an elementary illustration of this issue search the Internet for
‘Bertrand’s paradox’ of geometric probability or see Kendall & Moran (1963).

electronic reprint



main subject of this paper. It needs to be mentioned that there

is a difference in the geometric description of the hetero- and

homo-phase boundaries, with the treatment of the latter being

more complex. Both cases are considered in parallel.

We begin with considering a possible topology of the

‘boundary space’ and some parameterizations. Then, metrics

are introduced, and the impact of symmetries is discussed.

Finally, we proceed to measures and boundary distributions.

Although this paper contains numerous mathematical notions,

it is meant to be comprehensible for a materials scientist. In

order to make it less abstract, a number of concrete examples

are given. The exposition of the mathematical material is

somewhat informal, and the text is intended to be read in an

informal spirit. Some elementary information available in a

concise form in less accessible publications (Morawiec, 1998;

Morawiec, 2004) is repeated here for completeness.

2. Topology and parameterizations

Let us start with basic characteristics of the ‘space’ of

boundaries. Only macroscopic boundary parameters identi-

fying misorientations and inclinations are considered here (see

e.g. Sutton & Balluffi, 1995). With right-handed Cartesian

reference systems attached to crystallites, relative orientations

of the crystallites correspond to rotations relating the systems.

For simplicity, we assume that inversion is a symmetry

operation for both crystals, so one does not need to deal with

chirality. For two neighboring crystallites, the misorientation

M between the first grain and the second one is characterized

by a proper rotation. Proper rotations are faithfully repre-

sented by special orthogonal matrices with composition of

rotations corresponding to matrix multiplication. Thus,

misorientations can be identified by elements of SOð3Þ – the

set of these matrices; in what follows, we consider M to be in

SOð3Þ.
Besides the misorientation, one needs to specify local

inclination of the boundary. For that, one can use a unit vector

m1 normal to the planar boundary (segment), directed (by

convention) towards the second grain, with coordinates given

in the coordinate system of the first crystallite (Fig. 1).

Endpoints of possible normals – or unit vectors in all direc-

tions – constitute the sphere S2.

Already at this basic level there are obvious differences

between homo- and hetero-phase interfaces. Although

Cartesian crystal reference systems are chosen according to

conventions, in the homo-phase case, the crystal reference

systems are attached to each crystallite in the same way.

Therefore, there exists a natural and unique choice for the

reference alignment or reference misorientation represented

by the identity matrix I3 :¼ diag ð1; 1; 1Þ. On the other hand, if

two crystallites are of different types, there is no natural

reference alignment, the reference misorientation is not

unique and the misorientation represented by I3 depends on

convention (Fig. 2).

Moreover, within the macroscopic model, two neighboring

crystallites of the same type with the reference misorientation

M ¼ I3 constitute one crystallite, i.e. there is no boundary

between them. Thus, this misorientation is not valid in the

description of homo-phase boundaries. One may think about

the space of misorientations as SOð3Þ with a ‘hole’ at I3, or – if

inclinations are taken into account – with a two-dimensional

‘cut’ through the boundary space. These points can be added

to ‘complete’ the space – and this is necessary in a sense – but,

as indicated by Cahn & Taylor (2006), it seems sensible to

identify all inclinations corresponding to I3 because there is no

physical difference between them.

Let the symbol MB denote the boundary space. Based on

the above discussion, a hetero-phase boundary is determined

by the pair ðM;m1Þ. Formally, such pairs constitute a Cartesian

product of SOð3Þ and S2: i.e. the space of hetero-phase

boundaries equals SOð3Þ � S2. A homo-phase boundary is

also characterized by the pair ðM;m1Þ, except the case of

M ¼ I3. If this point was removed from the misorientation

space, the boundary space would be ðSOð3Þ n fI3gÞ � S2;

instead, in practice, theoretical considerations can be based on

SOð3Þ � S2, and – when physical aspects are considered – the

points corresponding to M ¼ I3 may be simply ignored.

Finally, ifM ¼ I3 is allowed as a misorientation with identified
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Figure 1
Schematic of an interface between two-dimensional crystallites.

Figure 2
For identical objects like the hexagons on the left, the reference
misorientation is the same irrespective of whether the horizontal or
vertical axis is perpendicular to an edge of the hexagon; in both
configurations all edges are parallel. In the right figure, in which the two
objects differ, an edge of the parallelogram is parallel to an edge of the
hexagon only in the upper configuration.
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inclinations, the ‘meridian’ fI3g � S2 of SOð3Þ � S2 collapses

into a single point leading to a space essentially different from

that of SOð3Þ � S2.

Digression on boundaries in two dimensions. The boundary

geometry in three dimensions is difficult to visualize. It is much

easier to deal with boundaries in two-dimensional micro-

structures. As in three-dimensions, a boundary between two-

dimensional ‘crystallites’ is specified by a misorientation and

an inclination (Fig. 1). For simplicity, we allow only proper

rotations. Boundary misorientations can be represented by

elements of SOð2Þ. The group SOð2Þ is isomorphic to the

group of complex numbers of unit length, and – topologically –

SOð2Þ is the unit circle S1. On the other hand, all possible

normals (unit vectors in all directions) also constitute S1. The

Cartesian product of these circles is a torus S1 � S1 (Fig. 3).

With inclinations at the reference misorientation collapsed

into a single point, the space looks like the one shown sche-

matically in Fig. 4. These are analogies in portrayal of two- and

three-dimensional boundaries. However, when symmetry is

taken into account (as in x4 below), there is a disparity

between the two- and three-dimensional symmetric cases: I3 is

the only element of SOð3Þ commuting with all other elements,

whereas the group SOð2Þ is commutative. Since in practice

only the three-dimensional description is applicable to real

polycrystalline materials, we will not pursue the two-dimen-

sional case any further.

Going back to the specification of boundaries in three

dimensions, the following question arises: with ðM;m1Þ
representing the boundary between the first grain and the

second grain, what is the representation of the boundary

between the second grain and the first one? The misorienta-

tion changes from M to MT (where superscript T denotes the

transpose of the matrix). The coordinates of the normal to this

boundary in the Cartesian coordinate system of the second

grain are given by MTm1. Thus, the grain boundary between

the second grain and the first grain has the form ðMT;m2Þ with
the normals m1 and m2 related by

m2 ¼ �MTm1: ð1Þ

It is convenient to use a notation ‘symmetric’ in m1 and m2

(Morawiec, 1998). The boundary corresponding to the pair

ðM;m1Þ is represented by a 4� 4 interface matrix,

B ¼
�

0 mT
2

m1 M

�
; ð2Þ

and BT represents the boundary ðMT;m2Þ. The matrix B can

be also expressed in the form

B ¼
�

0 �mT
1

m1 I3

��
1 0

0 M

�
¼

�
1 0

0 M

��
0 mT

2

�m2 I3

�
; ð3Þ

useful for considering the effect of rotations of the reference

systems. If a proper rotation represented by a 3� 3 ortho-

gonal matrix R1 is applied to the first crystallite in such a way

that features of the second crystallite remain unaffected, the

new boundary will correspond to the pair ðR1M;R1m1Þ and to

the interface matrix

�
1 0

0 R1M

��
0 mT

2

�m2 I3

�
¼ R1B; where R1 ¼

�
1 0

0 R1

�
:

ð4Þ

A similar relation applies to rotations of the second crystallite;

rotating it by R2 transforms the boundary R1B into R1BR
T
2 ,

where R2 is defined analogously to R1.

It must be stressed that the above notation – the pairs

ðM;m1Þ and interface matrices – is applicable only to points of

SOð3Þ � S2. If inclinations linked toM ¼ I3 are identified, the

notation makes no sense at this special point. Below, we use

the symbol B to indicate a boundary as an element of arbitrary

MB; this symbol denotes an interface matrix only if the

context implies that MB equals SOð3Þ � S2.

Example boundary. For homo-phase boundaries between

crystals with a cubic (primitive, face centered cubic or body

centered cubic) lattice, the �7 CSL misorientation can be

represented by
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Figure 3
The boundary space S1 � S1 for two-dimensional interfaces. Misorienta-
tions are assumed to change along the zonal (horizontal) circles, whereas
inclinations change along meridional (vertical) circles.

Figure 4
The boundary space with fI2g � S1 collapsed to a point.
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M ¼ 1

7

�3 �2 6

�6 3 �2

�2 �6 �3

2
4

3
5: ð5Þ

With m1 ¼ ½1 2 3�T=141=2 and m2 ¼ �MTm1 ¼ ½3 2 1�T=141=2,
the rotation axis ½121� corresponding to M is perpendicular to

m1 and m2. Thus, the interface matrix

Bð�7; ½1 2 3�Þ ¼
1

14

0 3ð141=2Þ 2ð141=2Þ 141=2

141=2 �6 �4 12

2ð141=2Þ �12 6 �4

3ð141=2Þ �4 �12 �6

2
664

3
775 ð6Þ

represents a �7 tilt boundary with the ð123Þ face.

Symmetric representation. There is no essential difference

between a pair ðM;m1Þ and the corresponding interface

matrix. On the other hand, there are other ways of identifying

boundaries. To give an example confirming the diversity of

possible approaches, one can use an even more symmetric but

computationally less convenient way of referring to a

boundary: Let N be an orthogonal matrix, which corresponds

to the rotation about the same axis as M but where the

rotation angle is half of that forM. (An additional convention

for selection of the axis is assumed if M is a rotation by � and

two axes with opposite senses are applicable.) The domain for

N is not the complete SOð3Þ but a part of it with the trace of

matrices not smaller than 1 (i.e. with rotation angles not

exceeding �=2). With such N, one has

NN ¼ M: ð7Þ
Let n be defined by

n :¼ NTm1 ¼ �Nm2: ð8Þ
The pair ðN; nÞ determines a boundary. With ðN; nÞ corre-

sponding to the boundary between the first crystallite and the

second one, (NT;�n) corresponds to the boundary between

the second and the first. The interface matrix B is related to

(N; n) via

B ¼
�
1 0

0 N

�
B0

�
1 0

0 N

�
; whereB0 ¼

�
0 �nT

n I3

�
: ð9Þ

This has a simple interpretation based on equation (4): if the

crystallites one and two were rotated by NT and N, respec-

tively, the interface matrix of the boundary would be B0.

We will not use the symmetric representation but it needs to

be kept in mind that some of the schemes introduced below

for the pairs ðM;m1Þ can also be applied to ðN; nÞ or other
constructs of similar type.

In mathematics, a topological space that can be ‘charted’ is

referred to as a topological manifold. Both SOð3Þ and S2 can

be seen as topological manifolds, and both are ordinarily taken

with their additional structures but – at this point – we are only

in search of parameterizations. Spherical projections used in

crystallography are examples of charts on S2. As for SOð3Þ,
numerous parameterizations are listed by Morawiec (2004). In

practice, it is important to know that parameterizations of S2

and SOð3Þ have singular points. However, these singularities

are inessential; one can use other maps properly covering the

area containing points singular on the first map, with each pair

of maps ‘coherent’ in the area of their overlap.

As an example, we will use one of the simplest charts of a

part of S2 – the so-called orthographic projection of the upper

hemisphere (with additional maps needed to cover the rest of

the sphere). The parameters are the first k1 and the second k2

coordinates of a unit vector k indicating a given point of S2.

The third coordinate k3 depends on k1 and k2 via

k3 ¼ ð1� kakaÞ1=2 (a ¼ 1, 2). Here and below, summation over

indices that appear twice in a single term is assumed.

The orthographic projection can also be used for para-

meterizing rotations because SOð3Þ is topologically identical

to the three-dimensional sphere (sitting in four-dimensional

space) with antipodal points identified. The complete sphere

can be described by a unit four-component vector q. Three

components of q, say q1, q2, q3, can be used as parameters of

the upper hemisphere and of SOð3Þ. The fourth component,

q0, depends on qi via q0 ¼ ð1� qiqiÞ1=2 (i ¼ 1, 2, 3).2

Parameterizations of S2 and SOð3Þ are a basis for charting

SOð3Þ � S2. A boundary is identified by five numbers, say

ðx1; . . . ; x5Þ; in the above case of orthographic projections, one
has ðx1; x2; x3; x4; x5Þ ¼ ðq1; q2; q3; k1; k2Þ. With a sufficient

number of maps, the five parameters ðx1; . . . ; x5Þ can be given

for an arbitrary pair of a special orthogonal matrix and a unit

vector. This applies to ðM;m1Þ, ðN; nÞ or any other such pair.

3. Distance functions and Riemannian metrics

Manifolds may have additional structures. One of them is a

distance function determining distances between points of a

manifold. The distance function is expected to satisfy the

conditions of non-negativity, symmetry, identity of indis-

cernibles and triangle inequality. With the interface manifold

provided with such metric structure, boundaries can be

compared by checking distances between them; similar

boundaries should be close, i.e. the distance between them

should be small.

A topological manifold is called a differential manifold if it

has a globally defined differential structure, which means that,

in areas where the charts overlap, the coordinates defined by

each chart are differentiable with respect to the coordinates of

every other chart. Distances on differential manifolds are

determined using a metric tensor (usually denoted by g). For a
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2 The numbers qi can be seen as components of a unit quaternion. Such
quaternions constitute a (two-to-one) representation of rotations but we do
not really need this here. The relationships between an orthogonal matrix, say
R, and the parameters q1, q2, q3 are given by

Rij ¼ ½ðq0Þ2 � qkqk��ij þ 2qiqj � 2"ijkq
0qk

and

qk ¼ �"ijkRij=½2ð1þ RllÞ1=2�;

where Rij are components of R, � is the Kronecker symbol and " is the
permutation symbol (see e.g. Morawiec, 2004).
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differential manifold possessing a metric tensor (Riemannian

manifold), the length of a segment of a curve parameterized

by u, from u1 to u2, is given by
R u2
u1
½gij ðdxi=duÞ ðdx j=duÞ�1=2 du,

where xi ¼ xiðuÞ (i ¼ 1; . . . ; 5) are parametric equations

describing the curve on a local chart. For a ‘complete’

Riemannian manifold, the distance between two points is

defined as the length of the shortest curve between these

points. Furthermore, the opposite occurs: a suitable distance

function, say s, determines a metric tensor; however, in

general, the Riemannian metric originating from this metric

tensor may be different from s. On a Riemannian manifold,

there is a unique canonical differential structure (Levi-Civita

connection) compatible with the metric of the manifold.

The issue of assigning a metric to the interface space is

somewhat ‘delicate’. Differently than in textures, there is no

distinct metric. Moreover, conditions are different depending

on whether hetero- or homo-phase boundaries are considered.

In the latter case – as the discussion of Cahn & Taylor (2006)

implies – the expectations may be to have a metric continuous

through the special point with collapsed inclinations at the

misorientation of I3. It was concluded by Cahn & Taylor

(2006) that ‘the ‘no boundary’ singularity in Grain Boundaries

might be a clue to appropriate metrics’. A number of metrics

are considered below but we focus on practical cases directly

linked to concepts familiar from analysis of (mis)orientations.

More ‘exotic’ metrics, some of which are mentioned by Cahn

& Taylor (2006), are ignored here.

There exist distinct (up to a constant factor) metrics on

SOð3Þ and S2; these are the metrics invariant under rotations

in the Euclidean space, and proportional to misorientation

angles and great-circle distances on the sphere, respectively.

The metrics on SOð3Þ and S2 can be used to construct a metric

on the interface manifold. This approach is in a way more

intuitive than working with other admissible metrics. Further

on, we will use the markers � and � for distances and metric

tensors on SOð3Þ and S2, respectively.

Generally, to obtain a metric tensor from a finite distance

function s in a given parameterization, one needs to calculate

the squared infinitesimal distance ds2 between a given point

(xi) and the point (xi þ dxi), which differs by infinitesimal

changes of the parameters; the metric tensor g ¼ gðxiÞ
contains coefficients of quadratic terms in the infinitesimal

changes

ds2 ¼ gij dx
i dx j; ð10Þ

and higher-order terms are neglected. Let us illustrate this on

the unit sphere. The distinct distance s� between points k and

k0 on S2 is a multiple of the angle between k and k0:

s�ðk; k0Þ ¼ c� arccosðk � k0Þ: ð11Þ
With this, the corresponding metric tensor in the coordinates

based on the orthographic projection can be easily calculated.

For small s2�ðk; k0Þ, there occurs

s2�ðk; k0Þ ’ 2c2�f1� cos½s�ðk; k0Þ=c��g ¼ 2c2�ð1� k � k0Þ: ð12Þ
This approximation gives the same components of the metric

tensor as s2�ðk; k0Þ (because appropriate expressions differ by

terms higher than quadratic in the infinitesimal changes),

while it allows for avoiding trigonometric functions. For the

vectors k ¼ ½k1; k2; ð1� kakaÞ1=2�T and k0 ¼ fk1 þ dk1;
k2 þ dk2; ½1� ðk1 þ dk1Þ2 � ðk2 þ dk2Þ2�1=2gT differing in ka

by dka, one has

2ð1� k � k0Þ ¼ �
1þ ðk1=k3Þ2�ðdk1Þ2 þ �

1þ ðk2=k3Þ2�ðdk2Þ2
þ 2

�
k1k2=ðk3Þ2�dk1dk2 ð13Þ

with accuracy to quadratic terms in dka. Thus, for the coor-

dinates k1 and k2, the metric tensor is given by

g�ab ¼ c2�
�
�ab þ kakb=ðk3Þ2�; ð14Þ

where a; b ¼ 1; 2.
The distinct distance on SOð3Þ is a multiple of the smallest

angle of the rotation necessary to transform R into R0. That
rotation is R0RT, and since the cosine of the rotation angle is

directly related to the trace of the rotation matrix via

½trðmatrixÞ � 1�=2 (e.g. Morawiec, 2004), one has

s�ðR;R0Þ ¼ c� arccos ½trðR0RTÞ � 1�=2� �
: ð15Þ

On the basis of this function, one can calculate the squared

infinitesimal distance ds2� and the metric tensor. For the

coordinates qi, the latter is given by an expression similar to

equation (14):

g�ij ¼ 4c2� �ij þ qiqj=ðq0Þ2� �
; ð16Þ

where i; j ¼ 1; 2; 3 (Morawiec, 2004).

The most natural way of constructing a metric on the

product manifold SOð3Þ � S2 is to use metrics of SOð3Þ and S2.
With R;R0 in SOð3Þ and k; k0 in S2, the product metric on

SOð3Þ � S2 is defined by s½ðR; kÞ; ðR0; k0Þ� :¼ ½s2�ðR;R0Þ þ
s2�ðk; k0Þ�1=2. In the parameterization described above, the

squared infinitesimal distance is ds2 ¼ g�ijdq
idqj þ g�abdk

adkb,

and the metric tensor has the simple form

g ¼
�
g� 0

0 g�

�
; ð17Þ

where g� and g� are given by equations (14) and (16),

respectively.

If this metric is applied to ðR; kÞ ¼ ðM;m1Þ, we denote it by
the symbol sA, i.e. s2A½ðM;m1Þ; ðM0;m0

1Þ� :¼ s2�ðM;M0Þ þ
s2�ðm1;m

0
1Þ. For brevity, we replace the pairs ðM;m1Þ and

ðM0;m0
1Þ by the corresponding interface matrices B and B0 as

arguments of the distances, i.e. sA½ðM;m1Þ; ðM0;m0
1Þ� �

sAðB;B0Þ. It is easy to verify that

sAðR1BR
T
2 ;R1B

0RT
2 Þ ¼ sAðB;B0Þ; ð18Þ

i.e. ‘synchronized’ rotations of crystallites and boundary

planes are isometries on SOð3Þ � S2 with the metric sA. In the

case of hetero-phase boundaries, since the reference misor-

ientation is not unique, the relationship [equation (18)] needs

to be satisfied because otherwise distances and distance-based

quantities would depend on the convention defining that

misorientation; with the above requirement fulfilled, sA has a

convention-independent meaning.
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As was already explained, in the case of homo-phase

boundaries, boundary inclinations have no physical sense for

the misorientation represented by I3. If this misorientation is

allowed with the additional requirement that all inclinations

coupled to it are identified as one point, the expressions for

metrics used above are not applicable at this particular point.

Some distance functions behaving properly at that point were

proposed by Cahn & Taylor (2006). This case is actually well

known in differential geometry as the so-called warped

geometry. A product of two Riemannian manifolds has such

geometry if its (warped product) metric can be written in the

form

ds2 ¼ g�ij dq
idqj þ f ðqiÞ g�ab dkadkb; ð19Þ

where f > 0 is a smooth function of coordinates qi of the first

manifold, and it is independent of the coordinates ka of the

second manifold. Thus, in the considered case, the geometry

‘almost’ decomposes into a Cartesian product of geometries of

SOð3Þ and S2 but that of S2 is scaled by a function of the

coordinates on SOð3Þ. What matters here is that, instead of a

positive scaling function, we take f vanishing at I3. This would

violate the condition of ‘identity of indiscernibles’ on

SOð3Þ � S2 but a proper metric arises with S2 at M ¼ I3
collapsed to a single point.

Example warped metric tensor. With �> 0 and s� � s�=c�, the
distance function

s2 ðR; kÞ; ðR0; k0Þ½ � ¼ s2�ðR;R0Þ þ ½s�ðR; I3Þ s�ðR0; I3Þ�� s2�ðk; k0Þ
ð20Þ

leads to the metric tensor

g ¼
�
g� 0

0 fg�

	
; ð21Þ

where g� and g� are given by equations (14) and (16),

respectively, and f ¼ f ðqiÞ ¼ arccos2� 1� 2 qiqið Þ. When the

above is applied to ðM;m1Þ, we will refer to the distance

[equation (20)] as sC. Rotations are not isometries of sC.

With such warped geometry, there is a particular point on

the boundary manifold differing topologically from the

remaining points. Moreover, this geometry has an essential

shortcoming of the arbitrariness of the scaling function.

Besides the condition f ðI3Þ ¼ 0, one may expect that f

depends only on the SOð3Þ-based distance from I3, and the

function is smooth, monotonically increasing and concave.

There are no other explicit restrictions on the form of f .

4. Equivalent boundary parameters

Owing to crystal symmetries, different points of the interface

manifoldMB correspond to geometrically identical interfaces.

Consequently, the boundary parameters are not unique, i.e. a

number of different sets of parameters stand for the same

geometrical arrangement at the boundary. With this, a ques-

tion arises about the relations between equivalent parameters.

Let C1 and C2 be special orthogonal matrices representing

point symmetry operations of crystals 1 and 2, respectively.

The misorientations M and C1MCT
2 are equivalent (Pospiech

et al., 1986). It turns out that similar relations apply to

boundaries in the representation by B matrices (Morawiec,

1998). From the expressions for the result of rotating the

reference systems [equation (4)], it follows that, with 4� 4

matrices C1 and C2 defined by

C1 ¼
�
1 0

0 C1

�
and C2 ¼

�
1 0

0 C2

�
; ð22Þ

the matrices B and C1BC
T
2 represent the same boundary.

Consistently, the pair ðM;m1Þ is equivalent to ðC1MCT
2 ;C1m1Þ.

Example symmetry operation. With octahedral m3m crystal

symmetry, the 120� rotation about the ½111� direction and the

180� rotation about ½101� are symmetry operations. They

correspond to orthogonal matrices

C1 ¼
0 1 0

0 0 1

1 0 0

2
4

3
5 and C2 ¼ �

0 0 1

0 1 0

1 0 0

2
4

3
5; ð23Þ

respectively. Because of these symmetries, the representation

C1Bð�7; ½1 2 3�ÞC
T
2 ¼ ð1=14Þ

�

0 �141=2 �2ð141=2Þ �3ð141=2Þ
�2ð141=2Þ 4 �6 12

�3ð141=2Þ 6 12 4

�141=2 �12 4 6

2
6664

3
7775 ð24Þ

is equivalent to Bð�7; ½1 2 3�Þ.

We assumed at the outset that inversion is a symmetry

operation of the crystals involved. Application of the inver-

sion to two such crystals gives the equivalence of ðM;m1Þ and
ðM;�m1Þ. In terms of the interface matrices, the above means

that B corresponding to ðM;m1Þ is equivalent to

B� ¼
�

0 �mT
2

�m1 M

�
; ð25Þ

i.e. in the assumed case, B and B� represent the same

boundary.

Finally, if there is no discrimination of individual crystallites,

a homo-phase boundary between grains 1 and 2 may be

considered to be equivalent to that between 2 and 1. This

interchange of the order of grains gives the equivalence

between B and BT. The potential presence of this equivalence

is another important feature differing for homo- and hetero-

phase interfaces.

Symmetries applicable to a boundary constitute a finite

group (in the algebraic sense); let it be denoted by G. It is a
product of proper subgroups of point groups of the neigh-

boring crystals, a two-element group involving the operation

given in equation (25), and – if relevant – a two-element group
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of the interchange of grains. G acts onMB. The set of points of
MB to which a given point can be transformed by the

symmetry operations is an equivalence class. Summarizing

previous paragraphs, the equivalence class ½B � of B in

SOð3Þ � S2 consists of

C1BC
T
2 ; C1B

�CT
2 ; C1B

TCT
2 and C1B

�TCT
2 ; ð26Þ

with the last two terms included only if the interchange of the

order of grains is applicable, and with C1 and C2 covering all

proper elements of point groups. The quotient setMB=G is the

set of all equivalence classes in MB by the equivalence rela-

tion G. Thus, because of the presence of symmetries, bound-

aries are determined not on MB but on MB=G.
The number of elements in equivalence classes is not the

same. Let the symbol Si ði ¼ 1; . . . ; jGjÞ denote the ith

element of G. For some Si, some points may be invariant, i.e.

there occurs

SiðBÞ ¼ B: ð27Þ
Symmetry operations satisfying the above relation for a given

B constitute an isotropy group GB of B. As in texture analysis,

the order of this group jGBj will be referred to as the multi-

plicity of B. The number of elements in the class ½B � is equal
to the ratio jGj=jGBj.

Multiplicity of B(�7, [1 2 3]). With C2 given by equation (23), one

has

C2 Bð�7; ½1 2 3�Þ

 �T

CT
2 ¼ Bð�7; ½1 2 3�Þ: ð28Þ

Besides this operation and the identity element of G, there are
no other operations with this property. Thus, the multiplicity

of Bð�7; ½1 2 3�Þ equals 2, and instead of 24� 24� 2� 2 ¼ 2304

points given by equation (26), there are only 1152 different

points of MB representing the boundary ‘(�7, ½1 2 3�)’.

A question arises about parts of the interface manifold in

which each geometrically distinct boundary is represented

only once, i.e. about a domain containing exactly one repre-

sentative of each equivalence class. In texture analysis, a

number of different names (e.g. asymmetric domain or unit,

symmetrically equivalent area, fundamental zone) are

ascribed to an analogous region for (mis)orientations. In

geometry, a similar notion of the fundamental region is used;

with the interface manifold, it is a closed subset FB of MB
such that the images SiðFBÞ coverMB, and the interiors of the
images have no common points. It is easy to see that internal

points of a fundamental region have a multiplicity of one, and

points of higher multiplicity are located at its boundary.

When it comes down to the determination of a fundamental

region, the task is to specify proper bounds on the parameters

ðx1; . . . ; x5Þ. This task can be simplified by the fact that

fundamental regions for boundaries are related to asymmetric

domains for misorientations, and the later are known for all

combinations of crystallographic symmetries (Morawiec,

1997). This allows one to construct fundamental regions for all

types of hetero- and homo-phase boundaries when

MB ¼ SOð3Þ � S2. For that purpose, one may take a Carte-

sian product of the proper fundamental region for misor-

ientations (this limitation accounts for operations C1BC
T
2 plus

BT if applicable) and a hemisphere of inclinations (which

accounts for B�).

Example fundamental region. For the octahedral symmetry of

crystals, with qi, ka being parameters of ðM;m1Þ, the funda-

mental region for misorientations can be given by the condi-

tions 0 	 q3 	 q1;2 	 q0ð21=2 � 1Þ and q1 þ q2 þ q3 	 q0. If

additionallyM is equivalent toMT, then one can take q1 	 q2.

The equivalence between B and B� can be accounted for by

limiting the parameters on the sphere of inclinations to the

upper hemisphere (k3 
 0).

Symmetries affect metric properties of the manifold of

interfaces. Distances may be invariant under symmetry

operations. For example, the transformation ‘�’ and the

rotations of the crystallographic point groups are isometries of

sA [cf. equation (18)],

sAðB�;B0�Þ ¼ sAðB;B0Þ ¼ sAðC1BC
T
2 ;C1B

0CT
2 Þ; ð29Þ

but the transposition operation T is not. The last issue does not

concern hetero-phase boundaries. For homo-phase bound-

aries, if there is no identification of inclinations atM ¼ I3, one

can define a new distance function (cf. Morawiec, 2000)

s2B ðM;m1Þ; ðM0;m0
1Þ

� �
:¼ s�ðM;M0Þ2
þ �

s�ðm1;m
0
1Þ2 þ s�ðm2;m

0
2Þ2

�
=2 ð30Þ

for which all considered symmetry operations are isometries:

sBðC1BC
T
2 ;C1B

0CT
2 Þ

sBðB�;B0�Þ
sBðBT;B0TÞ

)
¼ sBðB;B0Þ: ð31Þ

Since sB is not a product metric, its interpretation is not as

simple as that of sA, and the corresponding metric tensor has a

complicated form.

For other metrics (e.g. sC), relations analogous to equations

(29) and (31) may not be satisfied, and a question arises how to

construe distances between classes of equivalent points.

According to Cahn & Taylor (2006) ‘Symmetries can always

be incorporated by replacing actual distances by the minimum

among all representatives of the same equivalence class.’ This

would formally mean that if s denotes a distance defined on

MB (i.e. without influence of symmetry), with the presence of

symmetry, the distance on MB=G would be

� ½B1 �; ½B2 �ð Þ ¼ min
i;j

s SiðB1Þ;SjðB2Þ
� �

: ð32Þ

However, in general such � would violate the triangle

inequality (Fig. 5). Appropriately, instead of equation (32),

distance functions applicable to point sets need to be used.

This could be the Hausdorff metric, which in the considered

circumstances has the form
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�Hð½B1 �; ½B2 �Þ ¼ maxfmax
i

min
j

s SiðB1Þ;SjðB2Þ
� �

;

max
j

min
i

s SiðB1Þ;SjðB2Þ
� � g: ð33Þ

Equation (32) is a metric if all symmetry operations are

isometries of s: since

s SiðB1Þ;SjðB2Þ
� � ¼ s S�1

j SiðB1Þ
� �

; S�1
j SjðB2Þ
� �� �

¼ s S�1
j Si


 �ðB1Þ;B2

� �
; ð34Þ

the function � involving symmetry is given by the simple

formula

�ð½B1 �; ½B2 �Þ ¼ min
i

s SiðB1Þ;B2

� � ¼ �Hð½B1 �; ½B2 �Þ; ð35Þ

and it satisfies the triangle inequality. Taking this into account,

it is more convenient to use metrics for which symmetry

operations are isometries than any of those violating this

condition. As was indicated above, symmetry operations are

isometries of s ¼ sA in the hetero-phase case [equation (29)],

and of s ¼ sB in both the hetero- and the homo-phase cases

[equation (31)].

Before closing this section, it needs to be mentioned that

the differential structure is also affected by the equivalence of

symmetric points: the resulting object is not a differential

manifold. This object may be properly endowed with differ-

ential structure as a so-called differential orbifold – a gener-

alization of a manifold and of a quotient space of a manifold

with respect to a group of transformations (Satake, 1956). To

pass on the metric structure of the manifold, the group of

transformations must consist of isometries. Thus, one may

consider the space of hetero-phase boundaries to be the

orbifold MB=G, where MB is the product manifold of

SOð3Þ � S2 equipped with the product metric based on sA. The

same applies to homo-phase boundaries with the metric

determined by the distance function sB.

If the symmetry operations are not isometries (e.g. warped

geometry for homo-phase boundaries with the metric based

on sC), a proper ‘space’ can be built based on a suitably

selected fundamental region FB; with the rest of MB ignored,

FB is a Riemannian manifold with a boundary. To cover

complete ranges of boundary parameters, one may take the

images SiðFBÞ and glue them together along equivalent

boundaries. Schematics of FB and the covering space are

shown in Fig. 6.

5. Volume element and boundary distribution

A volume element is a differential defining a measure on the

manifold and provides a means to calculate volumes in a

generalized sense. Riemannian manifolds come with canonical

volume elements following from their metric structure. In the

case of a five-dimensional manifold parameterized by xi

(i ¼ 1; . . . ; 5), such a volume element is given by

dVðxiÞ ¼ jdetðgÞj1=2 dx1dx2 . . . dx5; ð36Þ
i.e. it is obtained from the metric tensor. The element dV is

expected to satisfy the normalization condition
R
MB

dV ¼ 1.

For the metrics defined above, this condition can be fulfilled

by an appropriate choice of the constants c� and c�.
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Figure 6
(a) Schematic of fundamental region selected on the manifold of Fig. 4.
(b) The fundamental region detached from the rest of the manifold. (c)
Unfolded space composed of images obtained by transformation of the
fundamental region by symmetry operations.

Figure 5
Schematic illustration of � violating the triangle inequality. Identical
symbols represent equivalent points. Assuming Euclidean distance as s,
there occurs �([*], [�]) + � ([�], [&]) < �([*], [&]).
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Example volume element. For the warped product metric

[equation (21)], the factor jdetðgÞj1=2 of the volume element

can be expressed as f jdetðg�Þj1=2jdetðg�Þj1=2. This formula also

applies to the product metric if f is set to 1; in the case of sA
and the parameterization by ðq1; q2; q3; k1; k2Þ one has

jdetðgÞj1=2 ¼ 8c2�c
3
� ðq0 k3Þ�1: ð37Þ

The volume element based on the metric sB is given by

jdetðgÞj1=2 ¼ ð8c2�c3� þ 2c4�c�Þ ðq0 k3Þ�1; ð38Þ
i.e. it differs from equation (37) only by the arrangements of

constants c� and c�. The constants are related by the

normalization condition. The integral of 1=k3 over the upper

hemisphere equals 2�; with additional maps, the integral over

the complete sphere is 4�. The integral of 1=q0 over SOð3Þ
equals �2. Thus, the integral of ðq0k3Þ�1 over the entire

product space SOð3Þ � S2 is 4�3.

The frequency of occurrence of boundaries can be modeled

by a density function over the macroscopic boundary para-

meters. This function is usually referred to as the (five-

dimensional or five-parameter) boundary distribution (e.g.

Randle, 2008). Once the volume element dV is known, the

boundary distribution, say F, can be formally defined. Ignoring

symmetries, its value at the point B times an infinitesimal

volume dV centered at that point is equal to the ratio of the

area dA of boundaries with parameters in dV to the total area

of boundaries A:3

dA=A ¼ FðBÞ dV: ð39Þ
With symmetries involved, the boundary distribution must

take equal values for equivalent boundary parameters, i.e.

FðBÞ ¼ F½SiðBÞ�: ð40Þ
Strictly speaking, F is determined on MB=G, i.e. F ¼ Fð½B �Þ,
and the definition of F needs to be suitably modified. As in

texture analysis, whether the element B or the class ½B � is used
as the argument of F may depend on context and convenience.

Needless to say, the boundary distribution corresponding to

F ¼ 1 is considered to be ‘random’.

Having a given model for the ‘random’ boundary distribu-

tion, it is essential to resolve how it relates to a boundary

distribution of a ‘random microstructure’. However, there is

no clear definition of the latter. Roughly, this could be a

microstructure with randomly oriented equiaxial grains and

no particular correlations between grain and boundary char-

acteristics. Generally, one should not expect such a micro-

structure in real materials. To construct it, one needs clearly

defined conditions for microstructure simulation. If one takes

Poisson–Voronoı̈ tessellation with orientations randomly

assigned to cells [based on invariant measure on SOð3Þ] and

random inclinations of cell faces (based on invariant measure

on S2), the boundary distribution will correspond to F ¼ 1

based on the product metric sA. Such distribution will be

uniform also in the space with the volume element obtained

from sB because of the proportionality of expressions (37) and

(38).

Even in the simple case of F ¼ 1, the impact of symmetries

needs to be remembered. Because of the symmetries, the

number of boundaries of different types will not be the same if

their multiplicities differ. Let us consider two balls of the same

small radius r centered at ½B1 � and ½B2 �. Let the volumes of

the balls be v1 and v2, respectively. With boundaries generated

at random, the volume vi is proportional to the number of

boundaries falling within the range r of elements of the class

½Bi � ði ¼ 1; 2Þ. Thus, vi is proportional to the number of

equivalent elements in the class ½Bi �, which equals jGj=jGBi
j.

Hence, one has

v1jGB1
j ¼ v2jGB2

j; ð41Þ
or, in other words, the volume vi is proportional to the inverse

of the multiplicity of Bi.

There is a link between distributions based on warped

product metrics with different scaling functions. For the

distribution F corresponding to a metric containing the scaling

function f , the ratio dA=A can be expressed as

Ff jdetðg�Þj1=2jdetðg�Þj1=2 dx1 . . . dx5. An analogous expression

is applicable to the couple F1 and f 1. Hence,

Ff ¼ F1 f
1: ð42Þ

In particular, if a small neighborhood of the misorientation

M ¼ I3 is excluded, and f ¼ 1 outside the neighborhood, then

F ¼ F1f
1. These relations may serve for comparing the effects

of applying various uniformity models.

It is worth noting that the integration of an arbitrary

boundary distribution F over all normals (with the weight of

jdetðg�Þj1=2) gives the conventional misorientation distribution

times f . The distribution of normals with respect to the

canonical measure on S2 is obtained by integration of F over

misorientations with the weight f jdetðg�Þj1=2.
Finally, it needs to be mentioned that, for analysis and

modeling of experimental boundary distributions, model

probability density functions are needed. These would be

generalizations of the Gauss distribution in Euclidean space.

Such generalizations are usually based on Brownian motion,

maximum likelihood or maximum entropy principles. In the

simple case of the product space SOð3Þ � S2, interesting model

distributions may be obtained from those used in the field of

‘directional statistics’ (Mardia, 1972; Prentice, 1986; Schaeben,

1996) or as generalizations of the ‘crystallographic exponential

family’ (van den Boogaart, 2002). More detailed examination

of this issue is beyond the scope of this paper.

6. Summary

The present paper contains mathematical foundations and

some background needed for defining a five-dimensional

boundary distribution. The definition requires a measure in
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3 This function was proposed by Bunge (1982), but no quantitative definition
was given except for the very special case when F can be factored with
separation of the misorientation (M) and inclination (m1) variables. Functions
similar to F were considered by Adams (1986) and Adams & Field (1992);
however, those explicitly defined in these papers differ from F by their
arguments.
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the space of boundary parameters. The measure, in turn, can

be obtained from an assumed metric structure of the interface

manifold, and both the metric and the measure are affected by

the presence of symmetries.

There is a difference between the formal treatment of

homo- and hetero-phase boundaries. For hetero-phase inter-

faces, the reference misorientation is not unique, but other-

wise analysis of such boundaries is straightforward. There is no

singularity at the reference misorientation, the Cartesian

product SOð3Þ � S2 can be taken as the interface manifold,

there is no equivalence due to interchange of grains and

applicable symmetry operations are isometries of the simple

product metric (sA).

The case of homo-phase boundaries is more complex. Two

distinct approaches are possible. First, following Morawiec

(1998, 2000), one can assume the interface manifold to be

SOð3Þ � S2 with a suitable metric (e.g. sB). However, this

means that data at M ¼ I3 are meaningless. Moreover, two

boundaries – both with misorientations close to I3 – may be

separated by a large distance because their inclinations may

differ considerably, whereas – from the physical viewpoint – all

‘small angle’ boundaries may be considered to be close.

Finally, with the first approach, there is no particular ‘refer-

ence’ boundary; this is against the convention of using the

misorientation angle – i.e. the distance to the reference

misorientation of I3 – for quantitative assessment of bound-

aries. On the basis of these arguments one may take an

alternative approach: following Cahn & Taylor (2006), homo-

phase ‘boundaries’ with the misorientation of I3 can be iden-

tified as one point. For the continuity at M ¼ I3, a warped

product metric with the scaling function vanishing at I3 can be

used. This point is distinct from other points and may serve as

a ‘reference’ boundary. However, complications arise because

symmetry operations are not isometries of basic warped

product metrics (e.g. sC), and ‘brute force’ symmetrization is

needed (i.e. the boundary space is obtained by selecting a

proper fundamental region and gluing together its images in

transformations by symmetry operations). Moreover and

more importantly, the choice of the scaling function is rather

arbitrary. The choice has an impact on the ‘random’ boundary

distribution; with the volume element depending on the

metric, this fundamental distribution is determined by the

convention used in selection of the scaling function.

Consequently, a question arises: how significant are the

reasons for postulating a warped geometry with identification

of inclinations at I3? Losing a unique reference point may be

an inconvenience but it has no other consequences; the lack of

it can be accepted like the fact that there is no such point in the

case of hetero-phase boundaries. It is true that ‘small angle’

boundaries have some similar physical characteristics but

these characteristics are either not connected to the metric

(e.g. free energy) or – if they are connected (e.g. boundary rate

on MB, i.e. roughly its alacrity for changing parameters) –

there is no evidence that a warped geometry will be of any

help in analysis of these quantities; more likely it will be a

nuisance. Taking into account the above arguments for and

against each of the two approaches to homo-phase interfaces,

we consider the first one to be more convenient.

Generally, other measures – different from those listed

above – may be applied but it must be stressed that a given

boundary distribution can be discussed only if the measure or

model of uniformity is explicitly specified; without that, the

boundary distribution is ill-defined and its analysis may lead to

inconsistent conclusions. It would be to the advantage of grain

boundary research to select a particular model and use it as a

standard, so boundary distributions originating from different

sources could be easily compared. In our opinion, the measure

following from the distance functions sA and sB could be a

good choice but this does not mean that better approaches

may not arise.

The author is grateful to Professor Helmut Schaeben of TU

Bergakademie Freiberg and Professor Christopher A. Schuh
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