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Abstract

A new algorithm for calculation of lattice parameters from convergent beam electron

diffraction (CBED) patterns has been developed. Like most of the previous approaches to

the problem, it is an optimization procedure matching geometric elements of high order

Laue zone (HOLZ) lines in experimental patterns to corresponding elements of kinemati-

cally simulated patterns. The procedure uses an original objective function based directly

on the underlying algebraic equation of the HOLZ lines. Although the new approach re-

quires crystal orientation parameters to be fitted alongside the strain components, it is

easier to implement than methods used previously. It is also straightforward to apply to

strain determination from multiple patterns. Numerical tests on dynamically simulated

patterns show that in the case of one or two patterns, the new procedure gives results that

are more reliable than the established method based on HOLZ line intersections. As an

example application, the a and c parameters of a TiAl alloy are determined.
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1. Introduction

Lattice parameters are basic characteristics of crystalline materials. Deviations of the

actual crystal lattice from a reference lattice can be determined from the geometry of high

order Laue zone (HOLZ) lines present in convergent beam electron diffraction (CBED)

patterns. The main application of this approach is the measurement of local elastic strains.

The CBED based method offers reasonable accuracy of a few parts per ten thousand and

a very good nanoscale spatial resolution (see, e.g., [1]). The resolution makes the CBED

technique suitable for correlating strains with elements of microstructure. It is also a

method of choice for investigation of strains in microelectronic devices. The main negative

aspect of the CBED measurements is a stress relaxation caused by sample thinning.

The strategy of the CBED method is simple: the strain with respect to the refer-

ence lattice is calculated by matching strain dependent simulated patterns to experimental

patterns. In principle, structural parameters can be obtained by fitting experimental and

theoretical intensities [2, 3, 4] but that is difficult due to dynamic effects. Therefore, match-

ing is based on simple geometric elements of HOLZ line patterns. In particular, following

Zuo [5], distances between intersections of the HOLZ lines are fitted. Especially sensitive

to line displacement are locations of small angle intersections, and they are considered to

be the main source of information. However, locations of the small angle intersections are

also very sensitive to errors in parameters of lines.

Another procedure is to match areas of triangles (or polygons) bounded by HOLZ

lines [6]. This approach is based on the (questionable) assumption that the areas are less

sensitive to dynamic effects at the intersections of HOLZ lines. The connection to the

Zuo’s method is simple because the triangle areas are directly related to the intersection

distances via Heron’s formula.

The matchings are usually implemented as optimization procedures with objective func-

tions defined as sums of squared deviations between experimental and simulated distances

or areas; e.g., [5, 6]. (For different approaches based on HOLZ line intersections see [7, 8].)

Additional complications are due to the limited accuracy of the voltage and the camera

length. The former is usually calibrated using a reference sample. As for the camera

length, it is either fitted or eliminated by matching ratios of distances or areas.

This communication gives an account of a new procedure for computation of lattice

parameters from the geometry of HOLZ line patterns. The method also uses optimization
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but the objective function is different. It is based directly on the underlying algebraic

equation of ”K–lines” (in ”K–line diffraction patterns” [9]) of which HOLZ lines in CBED

patterns are a particular case. Therefore, the new approach is more fundamental than

those used previously. For brevity, we will refer to it as a ”K–Line equation based scheme”

or KLEBS.

With a large camera length compared to a detector diameter, the conventional objective

functions [5, 6] are negligibly influenced by small inaccuracies in a crystal orientation. This

does not apply to KLEBS, in which correction to the orientation is fitted alongside strain

and camera length. This is a major difference, because with increasing number of fitting

parameters, the risk increases that the optimization will give false minima. Numerical tests

prove otherwise; they show that KLEBS gives relatively reliable results.

Before proceeding to the main section, it must be mentioned that one CBED pattern is

not sufficient for determination of all lattice parameters (or a complete strain tensor) [10]

because the corresponding optimization problem is ill-conditioned [11]. One way to cir-

cumvent the ambiguity problem is to perform the calculation based on multiple patterns

originating from one location. However, this causes additional experimental complications

and a decrease in spatial resolution. Numerical tests indicate that KLEBS gives more

reliable results than the established method based on line intersections when the number

of patterns is small.

2. Procedure based on K–line equation

In matching experimental and simulated diffraction patterns, the latter are calculated

numerous times. Since long computation times are needed for dynamic simulations, the

matching must rely on kinematic calculations1. In the kinematic framework, the location

of a HOLZ line is described by the (K–line) equation

2g · k = g · g , (1)

where g is the reciprocal lattice vector corresponding to the line, k is the wavevector of the

reflected beam satisfying k · k = 1/λ2, and λ denotes the radiation wavelength.
1Dynamic effects can be taken into account using additional measures. Frequently used is the ”effective

voltage approximation” [12, 13]. In some cases dynamic shifts of individual lines are calculated [14].
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In brief, the main idea of KLEBS is to determine the lattice parameters which minimize
∑

(2g · k − g · g)2, where the sum is over reflections and wavevectors. This concept can be

put into practice in a number of ways. In the particular implementation described here,

the scalar products of eq.(1) are calculated in a Cartesian coordinate system linked to the

crystal. The calculations require an initial approximation of the lattice parameters or, in

the case of strain determination, a reference direct lattice. Let a0
i be the i-th basis vector

of the reference lattice in the Cartesian coordinate system linked to the crystal. In this

system, the components of the reciprocal lattice vector g0 corresponding to the reflection

(h k l) are

g0 = (A0)−1 [h , k, l ]T ,

where A0
ij = (a0

j )i, i.e., A0
ij is the i-th coordinate of the j-th basis vector. Let I be the

identity matrix. A homogeneous displacement I + ε in the direct space alters the basis

vectors a0
i to ai = (I + ε) a0

i , whereas vectors of the reciprocal space are transformed to

g = (I + ε)−1g0 . (2)

Knowing ε, one can directly calculate the actual basis vectors ai, and hence, the standard

lattice parameters a, b, c, α, β, γ. Let L0 and λ0 be the initial assessments of the camera

length and the wavelength, respectively. The symbols L and λ denote their unknown actual

values. The corresponding parameters XL and Xλ are defined by the expressions

L = L0(1 + XL) and λ = λ0(1 + Xλ) ,

i.e. both XL and Xλ are dimensionless and close to zero.

The wavevector is obtained from the HOLZ line location and the radiation wavelength

via

k =
1
λ

v√
v · v , (3)

where v is a vector to a point on the diffraction line. The algebraic steps for getting

v depend on the way the lines are described. Let the coordinate system linked to the

microscope have the third axis along the optical axis of the system. If line parameters

are the distance of the line from the pattern center ρ, and the directed angle between the

outward-pointing normal to the line and the 1–axis φ, then the vector (in the microscope

system) to a point on the diffraction line can be expressed as

vm = w + swp ,
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where w = [ρ cosφ, ρ sinφ,−L]T is a vector to the point closest to the pattern center,

wp = [− sinφ, cosφ, 0]T is a vector perpendicular to w in the plane of the pattern, and s is

a number parameterizing the line (Fig.1). The range of s must be small because, in fact, the Fig.1

HOLZ traces are conic sections, and only sufficiently short fragments can be approximated

by straight lines. With the orientation of the crystal described by an orthogonal matrix

R, the vector v in the Cartesian coordinate system linked to the crystal is given by

v = Rvm .

The orientation is known only based on the approximate reference lattice parameters a0
i ;

let that orientation be given by an orthogonal matrix R0. The actual orientation R is a

product

R = R0RX

where RX is an orthogonal matrix corresponding to a small unknown orientation correction.

The matrix RX depends on three parameters. One can conveniently choose them to be

the Rodrigues parameters XR
i (i = 1, 2, 3) so

RX
ij = ((1−XR

k XR
k )δij + 2XR

i XR
j − 2εijkX

R
k )/(1 + XR

l XR
l ) ,

where δij is the Kronecker’s delta, εijk is the permutation symbol, and summation conven-

tion is assumed; see, e.g. [15].

Based on the g vectors (2) for a number of reflections and k vectors (3) determined for

some points on the corresponding HOLZ lines, one can define

ψ =
∑

(2k · g − g · g)2 , (4)

where the sum is over the reflections and points used, and ψ depends on the unknown

ε, XR
i , XL and Xλ: ψ = ψ(ε,XR

i , XLXλ). The parameters for which the ψ function

takes a minimal value are calculated numerically. Some of the parameters can be fixed if

the corresponding quantities are known; in particular, if the wavelength is assumed to be

known exactly, Xλ is set to zero.

If multiple patterns are used, one simply needs to add a sum over all patterns in eq.(4).

This, however, has a significant influence on the number of fitted parameters. With the

number of patterns being n, the optimization parameters are the sought–after components

of ε, 3n orientation parameters XR
i , n camera length corrections XL (and possibly one or

n wavelength corrections Xλ).
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The above optimization problem is non–linear. The expression 2k · g − g · g linearized

with respect to small ε, XR
i , XL and Xλ takes the form

2k · g − g · g ≈ 2g0 ·
(
(R0 RX − εR0) k0 + R0 (XL

[
0, 0, k0

3

]T − ξ k0) + ε g0 − g0/2
)

, (5)

where the matrix RX depends on the parameters XR
i through RX

ij = δij − 2εijkX
R
k , k0

is given by k0 = v0/(λ0
√

v0 · v0), v0 = w0 + fwp, w0 =
[
ρ cosφ, ρ sinφ,−L0

]T , and ξ =

XL (k0
3)

2 +Xλ. Inserting the above expression (5) into eq.(4) leads to a convex ψ function.

The linearized version of the method was tested alongside its exact form.

Although we are focused here on CBED patterns, it is worth mentioning that KLEBS is

also applicable to divergent beam X–ray diffraction (Kossel) patterns. The determination

of lattice parameters by this classical technique was advanced in the sixties with the use of

electron probe microanalyzers (see, e.g., [16, 17]), and is now being revived on a new level

using scanning electron microscopy and digital cameras [18, 19]. The only modification of

the described algorithm needed to get lattice parameters from Kossel patterns is a proper

calculation of the vm and v0 vectors.

3. Tests

Testing the reliability of a strain determination procedure is convincing if the output of the

procedure can be compared to correct results. A simple approach is to simulate patterns

with known lattice parameters, and then use these patterns to retrieve the parameters.

Because of the presence of dynamic effects in CBED patterns, dynamic simulations are

applicable. Our simulations were based on the Bloch wave scheme; see Fig.2. For simplicity, Fig.2

absorption was neglected, and the Debye–Waller temperature factor was set to zero. The

example test was based on five Si patterns corresponding to zone axes [1 3 0], [1 5 0], [2 3 0],

[1 3 3] and [1 3 3]; the patterns were simulated for very favorable conditions with visibility of

high index reflections, large camera length of 1600mm, detector size of 25.4mm × 25.4mm

and relatively low voltage of 100kV (Fig.3). The voltage was assumed to be known exactly, Fig.3

i.e., the parameter Xλ was set to zero.

The simulated patterns corresponded to a ”strained” lattice which differed from the
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reference lattice (a0
1 = [5.43, 0, 0]T , a0

2 = [0, 5.43, 0]T , a0
3 = [0, 0, 5.43]T in Å) by the strain

ε = 10−4 ×




15 30 30

−30 30

15




given in the Cartesian crystal coordinate system.2 Dynamic effects, the ambiguity, finite

thickness of the HOLZ lines and their curvature lead to discrepancies between the true and

recalculated strains. The deviation of the recalculated strain εr from ε was quantified by

∆ ≡ N(εr − ε)/N(ε), where N is the Frobenius norm N(x) ≡
√

Tr(xT x).

For instance, for the frequently used [1 3 0] pattern, the recalculated strain was

εr = 10−4 ×




13 28 30

−31 28

14


 ,


10−4 ×




12 30 29

−35 27

13





 .

Here and below, the results of the linearized version are given in parentheses. The corre-

sponding value of ∆ was 0.053 (0.100 for the linearized version), the fitted camera length

was 1599.7 (1599.4), and the orientation correction RX corresponded to a rotation by 0.29◦

(0.29◦).

The values of ∆ for the remaining patterns [1 5 0], [2 3 0], [1 3 3] and [1 3 3] were 0.286

(0.278) , 0.172 (0.170) , 0.777 (0.847) and 1.128 (1.333), respectively. The average value

of ∆ for all five patterns is given in the first row of Table 1. Results of tests on multiple Table 1

patterns are collected in the remaining rows. It is worth noting that there is not much

difference between the method based on the exact form of eq.(1) and the one based on linear

approximation of the equation. For comparison, data obtained conventionally by matching

distances between HOLZ line intersections [20] are listed in the last two columns. The one

marked by MFit contains results for the camera length fitted as a parameter, the numbers

in the column MRatio were calculated based on distance ratios. The test indicates that

KLEBS gives results more reliable than those of the conventional approach [5] if one or two

patterns are used. With more than three patterns, the conventional approach is superior.

The cause of degraded performance of KLEBS in the case of large n is the significantly
2Regardless of the ambiguity, a complete strain tensor was recalculated even in the case of a single

pattern. This allowed us to make the test simple. Different methods are compared based on the assumption

that on average the magnitude of the bias caused by the ambiguity is similar for all considered methods.
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increased number of fitted parameters. Limiting the number of free parameters improves

the reliability of the results. For instance, conventional fitting of intersection distances

for five patterns with exactly known camera lengths gives ∆ = 0.068, whereas for results

obtained with KLEBS, the deviation is ∆ = 0.021 (0.027). Although there is no simple way

to get highly accurate camera lengths, the above is not just a speculative discussion because

one may consider using an interactive iterative approach: apply consecutively conventional

methods [5, 6] – to get the camera lengths, and KLEBS – to get a better evaluation of the

strain tensor.

4. Example application

As an example, the method was applied to the determination of a and c parameters of

the tetragonal γ phase in the lamellar Ti–48(at.%)Al–2Cr–2Nb (α2 + γ) alloy at room

temperature. Four patterns collected with the camera length close to 461mm and fixed

voltage of approximately 199.0kV were used; one of the patterns is shown in Fig.2a. The Fig.2

orientations were beyond low index zone axes (to alleviate the influence of dynamic effects)

but they also gave a relatively large number of HOLZ lines in the patterns. Their zone axes

were approximately [337 854 397], [600 044 799], [119 988 101] and [551 357 755]. KLEBS

applied to four patterns gives a = 4.0106Å, c = 4.0615Å (a = 4.0106Å, c = 4.0614Å).

The results of matching distances between line intersections with camera length fitted

as a parameter (MFit) and those based on distance ratios (MRatio) are a = 4.0086Å,

c = 4.0600Å and a = 4.0086Å, c = 4.0599Å, respectively.

Comparison of results for proper subsets (of the complete set of patterns) provides

information about consistency of the analysis; a figure is put on the latter by assessing

standard deviations of the data. The application of KLEBS, its linearized version, MFit

and MRatio to all three– and two–pattern subsets (of the complete set of four patterns)

gives on average a = 4.0106Å and c = 4.0605Å with the standard deviations of 0.0031Å

and 0.0028Å, respectively.

From literature, the a and c parameters of γ–TiAl are found to be in the ranges 4.015−
3.975Å, 4.062 − 4.097Å, respectively [21]. Thus, our results for a are within these limits

close to the left bracket, while those for c are slightly beyond the lower bound.
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5. Conclusions

Lattice parameters can be determined from CBED patterns using a procedure based di-

rectly on the kinematic (K–line) equation of HOLZ lines. The procedure is based on finding

the parameters minimizing sums of squared deviations of experimentally determined left-

hand sides of the equation from the exactly known right-hand sides. The main difficulty

is that besides the lattice parameters and camera length, also the crystal orientation pa-

rameters must be fitted.

The approach was compared to the conventional matching of distances between line

intersections. Both procedures are applicable to calculations utilizing multiple patterns.

Numerical tests on simulated patterns indicate that the new method works better then

the conventional methods if one or two patterns are used; with more than three patterns,

conventional approaches give more reliable results.

In the presence of ambiguities, the reliability of results can be improved by combining

a number of procedures. The simplest strategy is to use different approaches and verify

whether they give similar results. In the case of discrepancies, consecutive application of

a series of different methods and correction of the optimization conditions may ultimately

lead to more reliable results.
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N◦ of patterns KLEBS MFit MRatio

1 0.483 ( 0.546 ) 0.971 1.614

2 0.259 ( 0.291 ) 0.964 1.058

3 0.297 ( 0.283 ) 0.200 0.225

4 0.326 ( 0.305 ) 0.117 0.121

5 0.168 ( 0.209 ) 0.070 0.070

Table 1.

A.Morawiec, An algorithm for refinement of lattice parameters
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Figure 1

A.Morawiec, An algorithm for refinement of lattice parameters
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Figure 2

A.Morawiec, An algorithm for refinement of lattice parameters
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Figure 3

A.Morawiec, An algorithm for refinement of lattice parameters
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Captions

Table 1. The deviation (∆) of recalculated strain from ”true” strain. Each entry in rows

1–4 was obtained by averaging results from five different pattern combinations. Each entry

of the last row (5) was obtained from a single set of five patterns. See text for more details.

Figure 1. Geometric characteristics of line AB (schematic).

Figure 2. An experimental (near [600 044 799] ≈ [3 0 4]) diffraction pattern of TiAl (a)

and corresponding dynamically simulated pattern (b).

Figure 3. Two (out of five) simulated Si patterns used in the test: a) [1 3 3], b) [1 5 0].
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