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Abstract

The method of residual strain determination using convergent beam electron diffrac-

tion (CBED) is attractive because of its good spatial resolution. However, attempts

to obtain all six independent strain components from a CBED pattern lead to am-

biguous results. The paper contains analysis of the ambiguities based on the complete

algorithm for matching experimental and strain dependent simulated CBED patterns.

The strain parameters which are not determinable by the CBED method are identified

by examination of the most common goodness–of–fit functions. The indeterminable

parameters are confirmed to be the ’13’ and ’23’ components and a combination of the

diagonal components of the tensor given in the Cartesian system having the ’3’ axis

parallel to the beam direction. The ambiguity can be eliminated based on multiple

diffraction patterns. It is shown that two different patterns may be insufficient to get

a unique strain tensor. The ambiguity can be removed only if certain characteristics of

the two patterns are different, or if more than two patterns are used.
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§1. Introduction

Elastic stresses that are locked into polycrystals influence properties of these materi-

als. Sometimes, the effect of these residual stresses is beneficial, and sometimes it is

harmful. Local stresses in microelectronic semiconductor devices lead to the formation

of crystal defects and to degraded functioning. Application of surface layers induces

residual stresses causing de-bonding or failure at interfaces. Heat treatment frequently

leaves undesired high residual stresses in materials or parts, e.g. the quality of welded

joints is influenced by stresses. The stress caused failure leads to scrapping products

being well advanced in a manufacturing chain. Ultimately, the lack of understand-

ing residual stresses has productivity and environmental implications. Understanding

residual stresses plays a significant role in explaining and then preventing failure of

components.

Determination of related residual strains is important for selecting optimal process-

ing and service conditions. There are a number of methods of residual strain determi-

nation using x-ray diffraction, neutron diffraction, strain gauges, ultrasonic methods,

micro-Raman spectroscopy; attempts are being made to use electron back-scattering

diffraction. However, all of the above have poor spatial resolution comparing to the

strain determination using transmission electron microscopy (TEM) and convergent

beam electron diffraction (CBED) patterns. With the potential strain sensitivity of

two parts per ten thousand and the spatial resolution of a few nanometers, CBED

is the method of choice for all investigations of strains at the smallest scale, e.g. in

microelectronic devices. And that occurs despite some stress relaxation due to sample

thinning, which is the main negative aspect of the TEM strain measurements. Thanks

to the spatial resolution, local strains can be correlated with microstructure elements

and crystallite orientations. This makes the CBED method indispensable for investi-

gating materials with properties influenced by microstructure or local crystallographic

texture.

In recent years, numerous papers about CBED strain measurements have been

published. In all cases, strain is determined numerically by minimisation of ’differences’

between experimental and simulated patterns with respect to unit cell parameters or

strain tensor components. Some of the early papers contain categorical statements

claiming the possibility of definite strain determination. These claims turned out to
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be unjustified. Although problems were indicated earlier (Humphreys 1991), the work

of Maier at al. (1996) made it clear that a solution obtained from a CBED pattern

cannot be unique because ’most CBED patterns can be simulated by a number of

different lattice parameters’. The authors conclude by noting that ’a general recipe to

the use of CBED patterns for evaluation of lattice parameters does not exist, since there

are many parameters involved in the process.’ They propose to approach the problem

by an ’intelligent choice’ of zone axes, and by making ’educated assumptions about

the specimen’. Some numerical methods of eliminating the ambiguity were proposed

(e.g. Rozeveld and Howe 1993). However, these approaches do not ascertain unique

strain components (c.f. Wittmann et al. 1998, Wittmann et al. 2000). In these

circumstances, the ambiguity problem is addressed by assumptions about the nature

of strain, i.e. by limiting the number of variable parameters. Even if such assumptions

are justified, in the presence of experimental errors, serious difficulties appear in the

form of instabilities of the final results. This hinders the development of fully functional

systems for strain determination.

The main subject of this paper is the separation of determinable strain components

from those which cannot be reliably evaluated. Contrary to the common opinion (c.f.

Maier at al. 1996), the large number of variable parameters is not the main source of the

ambiguity problem; even with a limited number of variables, one may face ambiguous

solutions. The problem is caused by the measurement geometry, which leads to ’in-

convenient’ goodness-of-fit functions. It follows from this geometry that the ambiguity

issue becomes more transparent when tensor quantities are expressed in the microscope

coordinate system because the sensitivity to displacements in the plane perpendicular

to the beam direction must be higher than to displacements parallel to that direction.

We confirm that in the presence of experimental errors, the standard CBED based

method cannot resolve values of certain parameters which can be expressed as simple

combinations of the strain components given in the microscope coordinate system. The

essential contributions of this paper are the explicit expression of the the goodness–of–

fit as a function of strain and clear identification of the indeterminable parameters in

the cases of one and multiple patterns used in the strain measurement. By focusing on

the complete strain tensor, the paper provides firm ground for confronting legitimate

assumptions an experimenter may take (e.g. incompressibility, plain stress et cetera)
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with the capability of the method to determine the paramaters not restricted by these

assumptions. Understanding the ambiguity problem will create a stable foundation for

the ’intelligent choice’ and ’educated assumptions’ proposed by Maier at al. (1996).

Despite the importance of the indeterminable parameters for the CBED method,

previous accounts on the subject are cursory and conflicting. Questions about the

dimensionality of the manifold of indeterminable parameters were asked by Wittmann

at al. (2000). Among various approaches to resolve the issue, these of Toda et al. (2000)

and Krämer et al. (2000) are closest to our way of thinking. Both groups recognise

the importance of specifying parameters in the microscope coordinate system. Toda

et al. (2000) assume plane strain with three determinable parameters. Also three but

different parameters are considered to be determinable by Krämer et al. (2000), and

these results, for the most part, are confirmed in this paper.

All strain components can be reliably determined based on multiple patterns with

different zone axes. The idea of using multiple tilts and voltages is quite trivial and has

been mentioned before but it has not been really explored. We give general guidelines

for approaching computational aspects of such method. It turns out that with standard

experimental approach, two different zone axes may be insufficient to remove the ambi-

guity completely. Unique strain can be obtained only if certain numbers characterising

the patterns have different values, or if three (or more) patterns are used.

Let us close this introduction with a note on our simplifying assumptions. First, our

considerations are based on the geometric theory of diffraction (Ewald 1969). Having a

thorough understanding of this simple case, one can proceed further with the refinement

based on more adequate approaches because conclusions of this paper are applicable to

procedures utilising dynamic corrections. Moreover, coordinate systems are assumed

to be Cartesian; this does not apply to Appendix, where a more general system is

used. Finally, the CBED based method is portrayed as a fine-tuning of six independent

unit cell parameters but in reality the problem is more complex. Besides the unit

cell parameters, also the effective voltage, the camera length and the misorientation

between the reference model without strain and the investigated specimen must be

attuned. Usually, most of these additional parameters are estimated beforehand based

on factors not involving strain. Alternatively, schemes with more than six independent

optimisation variables can be devised. However, these issues are not considered here.
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§2. Geometry of HOLZ lines

As was already mentioned, in the CBED method, strain is determined by comparing

experimental patterns with theoretically predicted models. In principle, the unknown

parameters could be determined by fitting experimental and theoretical intensities (c.f.

Zuo and Spence 1991). However, such an ideal approach is awkward. In practice,

strain is calculated by fitting characteristic geometric elements of high order Laue zone

(HOLZ) line patterns; in particular, distances between intersections of the lines are

matched. The calculation is based on equations for the locations of the intersection

points and their dependence on strain. Since we have not encountered a complete

formulation of this dependence in literature, appropriate relationships are given below.

Let bi, (i = 1, 2, 3) be the basis vectors of the crystal reciprocal lattice, and let λ

be the radiation wavelength. Within the geometric theory, the wave vectors k0 and k

of the incident and reflected beams, respectively, are governed by the Laue equation

k − k0 = g, where k · k = 1/λ2 = k0 · k0, and g is a reciprocal lattice vector, i.e.

g =
∑3

i=1 hib
i, and hi are integer Miller indices. In the convergent beam technique, the

incident beam direction k0 is variable. Elimination of k0 from the Laue equation and

the relation k · k = k0 · k0 leads to the well known relationship

2g · k = g · g . (1)

With fixed g, this equation describes a circle on the sphere k · k = 1/λ2. The circle

determines a (Kossel) cone visible on a microscope viewing screen as a so–called K–

line, which in the considered circumstances is a HOLZ line. Eq.(1) is the basis for the

elementary description of the geometry of K–line patterns (see, e.g. Cowley 1981).

A homogeneous displacement represented by a 3 × 3 matrix F transforms direct

space vectors according to x′ = Fx. The displacement involves both rotation and

stretch; they are factors in the polar decomposition F = RU , where R is an orthogonal

matrix representing the rotation, and a symmetric positive definite matrix U represents

the stretch. The resulting finite Lagrangian strain is given by (F T F−I)/2, were I is the

identity matrix. Since only small displacements are considered, strain can be expressed

as ε ≈ (F + F T )/2 − I ≈ U − I. In this case, F is ’close’ to I, and H := (F T )−1

is well defined. The displacement represented by F transforms the basis vectors bi to

bi′ = Hbi. Hence, the rule for the transformation of a general reciprocal lattice vector
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is

g′ =
3∑

i=1

hib
i′ = Hg . (2)

Based on (1), the equations

2g′1 · k′ = g′1 · g′1 , 2g′2 · k′ = g′2 · g′2 and k′ · k′ = 1/λ2 (3)

corresponding to reflections g′1 = Hg1 and g′2 = Hg2 determine the wave vector k′ of the

intersection of two HOLZ lines in a pattern originating from a crystallite transformed

by F . The solution of the system (3) is given in the Appendix. It has the property

k′ = κ(Hgi, I) = Hκ(gi,H
T H) (i = 1, 2) , (4)

where the second argument of κ is related to the crystallographic metric. The rela-

tionship (4) emphasises the form of the dependence of k′ on strain and the rotational

part of the displacement: only HT H in (4) depends just on strain, while the factor H

(= RU−1) contains both strain and rotational components. In relation to the consid-

ered pattern matching, the orientation of a sample generating an experimental pattern

is never exactly the same as the orientation used in a simulation, and this misorientation

is manifested by a non–trivial R. Ideally, to eliminate this effect, the goodness–of–fit

should be independent of the sample orientation. This means that the goal function

should be based on the R–independent scalar products k′(i) · k′(j) and kexp
(i) · kexp

(j) , where

k′(i) are strain dependent vectors expressed by (4), kexp
(i) are vectors to points on the

experimental patterns, and lower indices numerate the intersection points. Otherwise,

the function involves the misorientation and the number of unknowns is increased by

three independent misorientation parameters. In practice, the functions are selected

in such a way that the dependence is weak, and it is assumed to be of no conse-

quence. This approach is followed below. With the assumption that R equals I, we

have H = U−1 = (I + ε)−1 = I − ε.

§3. Goodness–of–fit and its sensitivity to strain

The crystallographic calculations of the previous section are conveniently performed in

a crystal coordinate system, whereas the data originating from TEM are given in the
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microscope coordinate system. With O being the matrix representing the crystal ori-

entation, the transformation H in the microscope coordinate system is Hs = O−1HO,

and the wave vector in the microscope coordinate system has the form k′s = O−1k′.

The experimental data are collected from a flat detector. A vector vs = [vs
1 vs

2 vs
3]

T

given in the microscope coordinate system with the ’3’ axis along the beam is projected

on the detector as the two–dimensional vector P(vs) = (L/vs
3)[v

s
1 vs

2]
T , where L is the

effective camera length. The goodness–of–fit functions are defined based on locations

of the HOLZ line intersection points for the experimental pattern and those for P(k′s)

which involve strain. The most common method is to match distances between the

intersections. The theoretical distance d′ between intersection points (i) and (j) is

d′ =| P(k′s(i))− P(k′s(j)) | . (5)

A simple goodness-of–fit function may have the form

ψ ∝
∑

n

(d′(n) − cdexp
(n) )

2 , (6)

where n numerates the measured distances dexp
(n) , d′(n) is given by (5), and c is a variable

magnification factor for fine-tuning L; see (Zuo 1992) and (Krämer et al. 2000). The

magnification factor can be eliminated by fitting distance ratios; e.g. instead of (6),

one can minimize
∑

m,n(d′(m)/d′(n) − dexp
(m)/dexp

(n) )
2. In another method, areas of trian-

gles defined by intersecting HOLZ lines are matched (Rozeveld et al. 1992).1 In all

these cases, the goodness–of–fit function is constructed using the projection P(k′s) to

determine d′, and it depends on strain ε via

k′s = O−1κ((I − ε)gi, I) .

The algorithm for the calculation of the function values is only slightly modified when

the effective voltage approximation or individual shifts of HOLZ lines are used to take

account of dynamic effects.

It is clear from this definition of the goodness–of–fit as a function of strain that

the considered minimisation problem is well–posed (i.e. it has a unique solution de-

pending continuously on the parameters). Using the above formulae, an explicit form
1This choice is based on the assumption that the areas of polygons are less sensitive to errors caused

by dynamic effects at the intersections of HOLZ lines. That argument is questionable because both

the distances and the areas are based on line locations, and the triangle areas are directly related to

the distances (via Heron’s formula).
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of the function can be constructed. Unfortunately, because of the intricacy of κ, that

expression is complicated even in simplest cases. (Linear approximations of the func-

tion are also involved.) However, properties of that function can be relatively easily

investigated using computer assisted symbolic calculations. We have checked numerous

patterns (zone axes [331], [230], [125], [334]), voltages (90, 120, 200kV) and goodness–

of–fit functions (ψ, ratios of distances, triangle areas, ratios of triangle areas). Here,

the analysis is illustrated by only one case (see Fig. 1) but the conclusions are general. Fig. 1

The HOLZ lines and intersection points employed are shown in Fig. 2, and the indices Fig. 2

of the lines are listed in Tab.1; cf. Krämer et al. 2000. Tab. 1

It is frequently underlined that due to the presence of HOLZ lines, the CBED

patterns carry ’three dimensional information’. However, the region of the reciprocal

space from which that data comes is still relatively flat; see Fig. 3. It is spread around Fig. 3

the plane perpendicular to the microscope axis. Therefore, in terms of the sensitivity

to strain, this particular direction is different than the directions perpendicular to it.

Hence, it is rightful to expect that the issue will become clearer when the patterns

are simulated for various components of the strain tensor εs (= O−1εO) given in the

microscope coordinate system with one of its axes along the microscope axis. In fact, it

shown below the sensitivity of patterns’ geometry to different combinations of εs
ij varies

drastically. This allows for a dichotomous division of parameters; those with negligible

influence (smaller than the impact caused by random experimental errors) are refered

to as indeterminable.

Since small (linear) strains are additive, an arbitrary strain can be represented

as a composition of elemental strains with one non–vanishing εs
ij and other strain

components fixed at zero. Due to the suitable choice of the coordinate system, some

of the elemental strains can be identified as indeterminable. Analysis performed for

all strain components shows that the dependence on εs
11, εs

22, εs
33 and εs

12 is much

stronger than the dependence on εs
13 and εs

23. For the considered example pattern, this

is reflected by the table



1.585 2.180 1.817× 10−4

1 4.036× 10−4

0.968


 ,

with the entry ij equal to the ratio ψij/ψ22, where ψij is the value of ψ for εs such that
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εs
ij = 0.001 and all other independent entries are zero. (All distances between points

marked in Fig. 2 were used, and c was fixed at 1.) In the case of non–zero εs
12, the

strain caused shifts of the intersection points are relatively small but occur in different

directions. On the other hand, large shifts caused by non–zero εs
13 are parallel (Fig. 4); Fig. 4

the strain with only εs
23 being non–zero leads to a similar effect. Generally, the strains

which are combinations of only εs
13 and εs

23 components cause changes observable as

parallel shifts of the patterns. Since this effect cannot be distinguished from a rotation

of the sample, such strains have little influence on the mutual distances between the

intersection points and, consequently, on the goodness–of–fit. Fig. 5a illustrates the Fig. 5

typical dependence of ψ on strain with varying determinable εs
12 and indeterminable

εs
13 and other independent components equal to zero.

The strains εs
13 and εs

23 are the only indeterminable elemental strains but they do

not exhaust the list of indeterminable parameters. Other indeterminable parameters

can be linear combinations of εs
11, εs

22, εs
33 and εs

12. Due to the axial symmetry of

the measurement (with particular choice of HOLZ lines disregarded), the combinations

must be symmetric with respect to indices 1 and 2. The most general strain of this

kind is based on εs
11 = εs

22, εs
12 and εs

33. Analysis of the goodness–of–fit functions shows

that there is one such indeterminable parameter, and it does not involve εs
12. Only the

strain of the form

diag(εs
11, ε

s
11, ε

s
33) =: e diag(1, 1, α) (7)

with a fixed α and variable e has no influence on the pattern. (See Figs. 4c and

5b.) The observation confirms the comment made by Krämer et al. (2000), that the

isotropic strain in the plane perpendicular to the beam has the same impact on a

pattern as some extension along the beam. The coefficient α is close to 2 for common

experimental conditions. Its precise value depends on magnitudes of reciprocal lattice

vectors and the magnitude of the wave vector. (For the considered example, α turns

out to be ∼ 2.014 and its value decreases with voltage at the rate of about 0.004 per

1kV.) Since the dependence of α on strain is very weak, a good approximation can be

calculated numerically for given voltage and zone axis. Assuming that α is known, the

number of indeterminable parameters is three. By altering the part of strain described

by (7), the trace of the tensor is modified, which means that the volumetric changes in

the material are indeterminable. With α 6= 1, the deviatoric part of is also affected.
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The weak dependence of pattern geometry on εs
13 and εs

23 and εs ∝ diag(1, 1, α) is a

general rule. It occurs for other zone axes and voltages, and for other goodness–of–fit

functions. In the presence of experimental errors, the minimisation problem becomes

ill-conditioned (i.e. relative change in solution can be disproportionate to change in

input data). The resulting ambiguity can be concisely characterised by the following

statement: with δi (i = 1, 2, 3) of the same order of magnitude as entries of εs, the

shifts of intersection points caused by two different strains

εs and εs +




δ3 0 δ1

0 δ3 δ2

δ1 δ2 α δ3




are indistinguishable.

Based on the flatness of the detectable part of the reciprocal space, the intuitive

guess could be that only plane strain is reliably determinable (see, e.g. Toda et al.

2000). However, this guess is inaccurate. In a sense, the CBED method is capable

of providing more than just plane strain but on the other hand, a combination of εs
ii

(i = 1, 2, 3) components is indeterminable.

Krämer et al. (2000) indicate that two diffraction patterns can be used to get around

the problem. But are two different patterns really sufficient? Let us assume that two

data sets (εs1 and εs2) for two zone axes (two orientations O1 and O2) are given. The

relationships between the strain tensor ε in the crystal coordinate system and εs1 and

εs2 given in the laboratory coordinate system are O−1
1 εO1 = εs1 and O−1

2 εO2 = εs2 .

With ε
sj

13 and ε
sj

23 (j = 1, 2) considered to be unreliable and relations involving them

disregarded, one has a system of eight linear equations

O−1
j εOj − ej diag(1, 1, αj) = εsj (8)

for eight unknowns – six independent entries of ε and e1 and e2. (Subscripts are added

to e and α to distinguish between quantities corresponding to different patterns.) For

getting a unique strain from the two patterns, it is necessary that the system has a

unique solution. However, the determinant of the system’s matrix is proportional to

α1 − α2. If α1 = α = α2, the rank of the matrix equals seven2, and there is one
2Except some special cases in which the rank can be lower, e.g. when the orientations differ by a

rotation about the microscope axis.
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indeterminable parameter, say δ, extended along the null space of the matrix. It can

be verified by substitution into (8) that the null space is given by

ε = δ O1NO−1
1 and e1 = δ = e2 ,

where

N =




1 0 β1

0 1 β2

β1 β2 α


 , βi =

(α− 1)∆i3

2∆33
, ∆ = O−1

1 O2 ,

and, for simplicity, ∆33 is assumed to be non–zero. In other words, two different

strains ε and ε + δ O1NO−1
1 lead to indistinguishable changes in geometry of the pairs

of patterns. In practical situations with the same voltage and similar magnitudes of

reciprocal lattice vectors, α1 and α2 may be very close, and two such patterns would

not be sufficient for determining the complete strain; i.e. the application of two zone

axes may only partially resolve the ambiguity issue. In order to get an unambiguous

solution, experimental conditions must be selected in such a way that the difference

between the αj coefficients has a significant value.

Assuming equality of all αj , there is a question whether the problem can be corrected

by using more than two different beam directions. With special cases disregarded, the

matrix of coefficients of the system has the rank equal to the number of unknowns.

Thus, formally, to resolve the problem of ambiguities in the CBED strain determination,

three or more patterns originating from the same area of the sample are sufficient.

Using multiple zone axes means sacrificing spatial resolution but the latter will still

remain high comparing to other strain determination techniques. It is recommended

by Maier et al. (1996) that in order to retain the resolution, the tilt ’should be kept to

a minimum’. This is in conflict with the objective of removing the ambiguity, since for

the problem to be better conditioned, the tilt must be significant.

From the formal viewpoint, one possible way of determining all six independent

strain components from multiple (three or more) patterns is by applying the standard

approach to each of the patterns with εsj as optimisation parameters; since ε
sj

13, ε
sj

23

and ej have little influence on the goodness–of–fit, they can be initially set at zero.

The next step is to use (8) (j = 1, ..., J ≥ 3) to get the complete strain tensor in the

crystal coordinate system. Knowing the latter, one can calculate the lattice parameters

or strain tensor in other coordinate systems; this includes the possibility of calculating
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ε
sj

13, ε
sj

23 and ej . The results can be refined by repeating the procedure with the new

values of ε
sj

13, ε
sj

23 and ej at the optimisation step.

More elegant and simple method is to determine the complete strain by modifying

the goodness–of–fit function so it concurrently involves data from multiple patterns. In

the case of ψ (and the other functions mentioned above) the modification is simple: the

sum must be extended over all the patterns. As in the previous approach, the crystal

orientations Oj must be known beforehand.

§4. Conclusions

Explicit formulae for the locations of HOLZ line intersection points and a complete al-

gorithm for the construction of the goodness–of–fit between simulated patterns allowed

for quantitative analysis of the level of sensitivity of the goodness–of–fit functions to

strain. The analysis shows that the problem of strain determination from one diffrac-

tion pattern is well–posed but ill–conditioned. Three independent strain components

are indeterminable; these are the ’13’ and ’23’ entries and the part e diag(1, 1, α) of

the tensor given in the coordinate system with the ’3’ axis being parallel to the beam

direction. If parameters used in the optimisation process (e.g. unit cell parameters)

effectively depend on any of these three components, they are unreliable.

Knowing the nature of ambiguities, one can make the CBED method more robust.

The reliability of the results can be improved by using multiple zone axes. Each pattern

provides three reliable strain components. These contributions are consistent in the

sense that they originate from one strain state; they can be seen as different projections

of the same entity. However, two different zone axes may be insufficient for unambiguous

determination of the complete strain. In the standard experimental approach with

patterns obtained at the same voltage, the characteristics α1 and α2 have similar values,

and there is still one parameter with negligible influence on the goodness–of–fit. From

the formal viewpoint, unique strain tensor can be obtained only if these characteristics

are sufficiently different or if more than two different zone axes are used.
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Appendix

It can be verified by substitution that equations

2gi · k = gi · gi (i = 1, 2) , k · k = 1/λ2 (9)

are satisfied by

k =
y × z ± y

√
4y · y/λ2 − z · z
2y · y , (10)

where y = g1 × g2 and z = g1(g2 · g2) − g2(g1 · g1). If M is a matrix representing the

metric in the reciprocal space, eqs.(9) can be written as

2gT
i Mk = gT

i Mgi (i = 1, 2) , kT Mk = 1/λ2 . (11)

The solution (10) takes the form

k = κ(gi,M) =
y × (Mz) +

√
det(M)

(
M−1y

) √
4 det(M) (yT M−1y)/λ2 − zT Mz

2 det(M) (yT M−1y)
,

where y = g1×g2, z = g1 (gT
2 Mg2)−g2 (gT

1 Mg1), and × has only its algebraic meaning.

Now, let the vectors gi be replaced by g′i = Hgi; cf. eq.(2). Equations 2g′i ·k′ = g′i ·g′i
and k′ · k′ = 1/λ2 are solved by

k′ = κ(Hgi,M) .

On the other hand, these equations can also be expressed as 2gT
i Al′ = gT

i Agi and

l′T Al′ = 1/λ2, where l′ = H−1k′ and A = HT MH. In this form, they are identical to

eqs.(11). Hence, l′ = κ(gi, A) or

k′ = Hκ(gi,H
T MH) .

With M = I, one gets eq.(4).
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Captions

Figure 1. The [331] diffraction pattern of Si obtained for 119.2kV. Geometry of this

pattern is used as an example throughout the paper.

Figure 2. Schematic of the pattern shown in Fig. 1. Cubic lattice with the constant of

a = 0.54307nm was used to simulate the pattern.

Figure 3. Projection of the reciprocal lattice nodes listed in Tab.1 on the plane per-

pendicular to the [1 1 6] direction. The nodes are marked by disks. For reference, the

locations of (3 3 1) and (5 5 0) are marked as squares.

Figure 4. The shift of the intersection points (dots) for the strain with εs
12 = 0.001

(a), εs
13 = 0.001 (b) and εs = 0.001 × diag(1, 1, 2) (c). The other independent strain

components are zero. For reference, the locations of the points corresponding to the

material without strain are marked by crosses.

Figure 5. (a) The dependence of ψ on εs
12 (horizontal axis) and εs

13 (vertical axis).

The other strain components are zero. The values of isolines are omitted for clarity;

to make the point, it is sufficient to indicate that the ratio between the values at

(εs
12 = 0.001, εs

13 = 0) and (εs
12 = 0, εs

13 = 0.001) is ∼ 1.2 × 104. (b) The dependence

of ψ on εs
33 (horizontal axis) and 2εs

11 (vertical axis), for the strain tensor given by

εs = diag(εs
11, ε

s
11, ε

s
33). The ratio between the values at 2εs

11 = 0.001 = −εs
33 and

2εs
11 = 0.001 = εs

33 is ∼ 2.0× 104.

Table 1. Miller indices of the HOLZ lines shown in Fig. 1.
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Figure 1.

A.Morawiec, ... residual strain determination ...
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Figure 2.

A.Morawiec, ... residual strain determination ...

17



( - 5  5  0 )

( 3  3  1 )

( 0  0  0 )
123 45 78 9 1 01 16

Figure 3.

A.Morawiec, ... residual strain determination ...
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Figure 4a.

A.Morawiec, ... residual strain determination ...
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Figure 4b.

A.Morawiec, ... residual strain determination ...
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Figure 4c.

A.Morawiec, ... residual strain determination ...
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Figure 5a.

A.Morawiec, ... residual strain determination ...
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Figure 5b.

A.Morawiec, ... residual strain determination ...
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1 (9 7 9) 5 (6 2 16) 9 (10 4 14)

2 (7 9 9) 6 (2 6 16) 10 (4 10 14)

3 (11 9 3) 7 (12 12 4) 11 (3 3 15)

4 (9 11 3) 8 (12 12 4)

Table 1.

A.Morawiec, ... residual strain determination ...
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