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Abstract

A function representing the distribution of grain boundaries is needed for a statistical
description of the boundaries in polycrystalline aggregates. It is assumed to be deter-
mined in the space of macroscopic boundary parameters. Equivalences between points
of the space caused by crystal symmetries lead to symmetries of the grain boundary
distribution. These symmetries are investigated for both homophase and heterophase
grain boundaries. Using known asymmetric domains for misorientation distributions,
a method of determining the domains of grain boundary distributions is given for all
possible combinations of crystallographic symmetries.
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Introduction

Many of the investigations of sharp grain boundaries in polycrystalline materials are case
studies but new measurement techniques (see, e.g., [1]) allow a statistical approach. This
is, for instance, the case when frequencies of CSL boundaries are considered. However,
one would like to be able to analyze grain boundaries statistically in a more complete
way, for all possible grain misorientations and boundary inclinations. This is possible
by using the distribution (density function) of grain boundaries over the macroscopic
boundary parameters. The distribution may play a role similar to that of the orientation
distribution in crystallographic texture analysis.

In order to define a grain boundary distribution (GBD), a measure in the parameter
space is needed. The measure, however, is not unique, and thus GBD depends on its
choice. The situation is different than in the case of the orientation distribution which is
determined on the special orthogonal group with a natural choice of the unique invariant
volume. Let us also mention that if metric properties of the space are given, they deter-
mine the volume element. All these facts have to be taken into account when defining
the GBD.

Moreover, because of crystal symmetries, the boundary parameters are not unique,
i.e., a number of different sets of parameters represent the same geometrical arrangement
at the boundary. The GBD must take equal values for these arguments, and thus, it also
exhibits certain symmetries. Its domain can be reduced to an asymmetric domain, i.e., to
a part of the parameter space in which each physically distinct boundary is represented
only once. The aim of this paper is to investigate possible symmetries of distributions
for both homophase and heterophase boundaries.

Definition of GBD

Only macroscopic grain boundary parameters are considered here, i.e., 3 parameters
for the misorientation of grains, 2 for the local inclination of the boundary and one
discrete parameter for the change of handedness. (See, e.g., [2].) The space in which
boundaries are determined consists of (proper and improper) rotations and unit vectors
locally normal to the boundary surfaces. The former may be identified with the manifold
of orthogonal matrices O(3) and the latter, via Gauss mapping, with the unit sphere S2.
Thus, in general the domain of the distribution is O(3)× S2. If enantiomorphic crystals
are treated as different phases then improper rotations can be excluded and the space
can be confined to the connected component SO(3)× S2, with SO(3) containing special
orthogonal matrices.

A boundary will be specified by an orthogonal matrix g of misorientation and a unit
vector n normal to the boundary. It is assumed that a Cartesian coordinate system is
attached to the crystal structure and the components of n are given in that system, and g
relates the systems of two neighboring crystallites. To be more precise, let us consider two
neighboring crystallites numbered 1 and 2. All quantities related to the first crystal will
have index 1 attached; similarly, 2 will be attached to those related to the second crystal.
Let the orientations of the crystallites with respect to an external coordinate system be
given by orthogonal matrices g1 and g2 (cf [3]). The grain boundary between the first
grain and the second one is specified by the misorientation g = g1g

T
2 and the normal to

the boundary n1 (by convention) directed towards the second grain, with coordinates
specified in the coordinate system of the first crystallite; i.e., the boundary is determined
by (g,n1). The coordinates of the normal to the boundary in the Cartesian coordinate
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system of the second grain are given by gTn1. Thus the grain boundary between the
second grain and the first one has the form (gT ,n2) with the normals n1 and n2 related
through

n2 = −gTn1 . (1)

Once the volume element dV is chosen, the GBD, say f , can be defined. Its value at
the point (g,n) times an infinitesimal volume dV centered at that point is equal to the
ratio of the area dS of boundaries with parameters within dV to the complete area of
boundaries S

dS/S = f(g,n) dV .

It is assumed that
∫
dV = 1, and the distribution corresponding to f = 1 is considered

to be random.1

As was mentioned in the Introduction, the expression for a volume element follows
from a metric structure determining a distance between points of the manifold, i.e.,
representing the degree of closeness between grain boundaries. With parameters xi (i =

1, ..., , 5) and metric tensor d, the element dV is given by dV =
√
| det(d) | dx1 dx2... dx5.

In the case of SO(3)× S2 the most natural choice of metric is the product metric of
the unique invariant metric of SO(3) and the unique canonical metric on S2 inherited
from the Euclidean space. For two points (boundaries) (g,n) and (g′,n′), the distance
on SO(3), say χ•, is related to the smallest angle ω of rotation necessary to transform
g into g′, and the distance on S2, say χ◦, is related to the angle γ between the vectors
n and n′. It is assumed that χ2

• = 2(1 − cos(ω)) = 3 − tr(gTg′) = ∥g − g′∥2/2 and
χ2
◦ = 2(1 − cos(γ)) = 2(1 − n · n′) = ∥n − n′∥2, where the norm ∥ · ∥ of a matrix X is

defined by ∥X∥ = (tr(XTX))1/2. (Because for ϵ close to 0 one has 2(1−cos(ϵ)) = ϵ2+O(4),
the local metric properties given by the angles ω and γ are the same as for much simpler
χ•(g, g

′) and χ◦(n,n
′), respectively.) Let the finite distance χ between (g,n) and (g′,n′)

be determined by
χ2((g,n), (g′,n′)) = χ2

•(g, g
′) + χ2

◦(n,n
′) . (2)

Grain boundaries can be compared by checking their distance χ. Similar boundaries are
close in the space and thus their distance is small.

To give an example, let us concentrate on a specific choice of parameters. For the unit sphere
S2, the spherical coordinates (α, β) with α ∈ [0, π] and β ∈ [0, 2π) are defined in such a way that
the Cartesian coordinates of n are n1 = sinα cosβ, n2 = sinα sinβ and n3 = cosα. In these
coordinates the metric on S2 can be expressed in the well known form dχ2

◦ = dα2 + sin2 α dβ2.
(It is obtained by determining square of the distance of points with parameters (α, β) and
(α+dα, β +dβ).) Thus, the metric tensor is diagonal with 1 and sin2 α on the diagonal. With
total volume normalized to 1, the volume element dV◦ on the sphere is dV◦ = (4π)−1 sinα dα dβ.

As for the metric on SO(3), let the coordinates be given by the Euler angles φ1, ϕ, φ2

(see [3]). The invariant metric on SO(3) in this parameterization has the form dχ2
• = dφ2

1 +
2 cos(ϕ)dφ1dφ2+dφ2

2+dϕ2. One easily gets the invariant volume element dV•; with the volume
normalized to 1 it is given by dV• = (8π2)−1 sin(ϕ) dφ1 dϕdφ2.

For this particular choice of parameters (α, β, φ1, ϕ, φ2) the product metric on SO(3)× S2

is dχ2 = dα2 + sin2 α dβ2 + dφ2
1 + 2 cos(ϕ)dφ1dφ2 + dφ2

2 + dϕ2, and the corresponding volume

element has the form dV = (32π3)−1 sin(ϕ) sin(α) dφ1 dϕdφ2 dα dβ (see [4]). Again, the volume

is normalized to 1.

1The above definition has some features common to that given by Adams [4]. However, in that case,
inclinations are referred to external (sample) reference frame and thus the arguments of the function are
other than the macroscopic boundary parameters.
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This approach, however, has certain deficiency. Let us consider boundaries between
grains A1 and A2, and between B1 and B2. One would like the distance between the
boundaries A1/A2 and B1/B2 to be equal to the distance between A2/A1 and B2/B1.
Does it occur for χ as defined by eq.(2)? The answer is no; but the distance (2) can be
modified to make it satisfy that condition. For example, χ can be defined as

χ2((g,n1), (g
′,n′

1)) = χ2
•(g, g

′) + (χ2
◦(n1,n

′
1) + χ2

◦(n2,n
′
2))/2 , (3)

with the normals are related through eq.(1), i.e., n2 = −gTn1 and n′
2 = −g′Tn′

1. The
question arises whether this change of the metric affects dV (and thus, the shape of the
reference random distribution)? It does not; it can be checked by direct calculation that,
disregarding the normalization coefficient, the volume element following from the metric
(3) has the same form as the one corresponding to (2).

Symmetries

Due to crystal symmetries, different points of the space O(3)×S2 may represent geomet-
rically identical interfaces. The presence of the symmetries leads to equivalence between
such points. The GBD must take equal values at equivalent points. In relation to this,
two problems arise: i.) what are the relations between equivalent points, and ii.) what
is the shape of its asymmetric domain defined as a region in the parameter space in
which each geometrically distinct boundary is represented only once, i.e., which contains
exactly one representative of each equivalence class.

Let n be a vector perpendicular to a crystallographic plane with Miller indices (h k l) =
hT . Vector neq perpendicular a plane heq symmetrically equivalent to h is related to n
via

neq = cn , (4)

where c ∈ O(3) is an orthogonal element of a space group operation.2 Because only
macroscopic parameters of the boundary are considered, the translations do not play a
role here.

Let c1 and c2 be point symmetries of crystals 1 and 2, respectively. Thus, the ori-
entation g1 is equivalent to c1g1. Analogously, g2 is equivalent to c2g2. Hence, the
misorientations g and c1gc

T
2 are equivalent.

The question is, when the misorientations c1gc
T
2 and planes heq

1 and heq
2 equivalent

to h1 and h2, respectively, represent a boundary indistinguishable from the original one.
From (4) the normals neq

1 and neq
2 to the plane should satisfy neq

1 = cx1n1 and neq
2 =

cx2n2. We want to know which of the crystal symmetries are acceptable as cx1 and cx2
so the relations between the normals remain consistent. Vectors neq

1 and neq
2 determine

an equivalent boundary if they are related through (1) with g replaced by one of the
misorientations c1gc

T
2 symmetrically equivalent to g, i.e., if neq

1 = −c1gc
T
2 n

eq
2 . This means

that cx1n1 = −c1gc
T
2 c

x
2n2 must occur. Taking into account (1) one has cx1gn2 = c1gc

T
2 c

x
2n2,

2To show this let us consider non-coplanar vectors x1,x2,x3 and x4; first 3 vectors determine the
crystallographic plane h, and the fourth one indicates the sense of the normal. One can write n =
m sign(m · (x4−x1)) where m = (x2−x1)× (x3−x1) = x1×x2+x2×x3+x3×x1. An element (c | t)
of the crystal space group (t – translation) transforms xi (i = 1, ..., 4) into xeq

i = (c | t)xi = cxi+t. Vector
neq normal to the plane heq is determined by xeq

1 ,xeq
2 ,xeq

3 ,xeq
4 . There occurs (xeq

4 − xeq
1 ) = c (x4 − x1)

and meq = xeq
1 ×xeq

2 +xeq
2 ×xeq

3 +xeq
3 ×xeq

1 = det(c) cm, and hence neq = meq sign(meq · (xeq
4 −xeq

1 )) =
(det(c))2 cm sign(m · (x4 − x1)) = cn.
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and because n2 is arbitrary, one gets (cT1 c
x
1)g = g(cT2 c

x
2). For arbitrary g, this equation is

satisfied in only two cases

cx1 = c1 , cx2 = c2 or cx1 = ic1 , cx2 = ic2 ,

where i denotes inversion. Because cx1 and cx2 must be elements of crystal point groups,
the second case occurs only if point groups of both crystals contain inversion. This means
that (g,n1) is equivalent to (c1gc

T
2 , c1n1), and to (c1gc

T
2 ,−c1n1) if inversion on both sides

is involved (and the latter case is already contained in the former). What matters is that
the element c1 preceeding n1 cannot be decoupled from c1 preceeding g. In agreement
with (1) one has (c1gc

T
2 )

T c1n1 = c2g
Tn1 = −c2n2.

Concluding, the grain boundary distribution f satisfies

f(g,n1) = f(c1gc
T
2 , c1n1)

(for all elements c1 and c2 of the point groups). If both crystals are centrosymmetric one
has

f(g,n1) = f(g,−n1) . (5)

The shapes of asymmetric domains for f follow directly from the domains for the mis-
orientation distribution. The later are known for all combinations of crystallographic
symmetries [5]. This allows one to construct asymmetric domains for GBD for all types
of homo– and heterophase boundaries; for instance, one can take the product of the do-
main of misorientation distribution (determined by the point groups of the crystals) and
a unit sphere (or a hemisphere if (5) occurs).3

Moreover, in the case of homophase boundaries the crystallites are indistinguishable
and the GBD takes the same value at (g,n1) as at (gT ,n2) = (gT ,−gTn1); i.e., there
occurs

f(g,n1) = f(gT ,−gTn1)

and the asymmetric domain is additionally reduced in size by half.
It is noteworthy that if one assumes that a given scalar function, say grain boundary

energy, depends only on the macroscopic parameters and takes equal values for geo-
metrically identical boundary configurations, analogous symmetries will occur for that
function.

It seems to be easier to use the above properties by applying the following notation:
let a 4× 4 matrices B, C1 and C2 be defined by

B =

[
g n1

nT
2 0

]
, C1 =

[
c1 0
0 1

]
, C2 =

[
c2 0
0 1

]
,

i.e., the first matrix (with n2 = −gTn1) determines the boundary (g,n1), and the other
two correspond to the crystal symmetries. The matrix related to the boundary (gT ,n2)
has the form BT . The equivalency between (g,n1) and (c1gc

T
2 , c1n1) can be expressed

as equivalency between the matrices B and C1BCT
2 . Thus, the equivalency relations for

GBD are analogous to those for misorientation distribution. Let us also mention that
det(B) = det(g) = ±1, and that the distance (3) can be expressed as

χ2((g,n1), (g
′,n′

1)) = ∥B −B′∥2/2 ,

3Let us mention here that the way of determining the asymmetric domain (fundamental zone) for
misorientations in Rodrigues parameters by taking the common to zones of both crystals (as suggested
in [2], p.17) is incorrect.
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where B′ corresponds to (g′,n′
1). Finally, it has to be taken into account that symmetries

affect the finite metric properties of the space; in the symmetric case, the distance between
two boundaries is given by the smallest of all values of χ for all representatives of the
classes to which the boundaries belong.
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