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EFFECT OF MICROSTRUCTURE AND UNIT CELL’S GEOMETRY ON THE COMPRESSIVE MECHANICAL RESPONSE OF
ADDITIVELY MANUFACTURED Co-Cr-Mo SHEET I-WP LATTICE

Co-Cr-Mo based sheet [-WP lattice was fabricated via laser powder bed fusion. The effect of microstructure and the I-WP shape
on compressive mechanical response was investigated. Results of compression test showed that yield strength of the sheet [-WP
was 176.3 MPa and that of bulk Co-Cr-Mo (reference material) was 810.4 MPa. By applying Gibson-Ashby analytical model, the
yield strength of the lattice was reversely estimated from that of the bulk specimen. The calculated strength of the lattice obtained
was 150.7 MPa. The shape of deformed lattice showed collective failure mode, and its microstructure showed that strain-induced
martensitic transformation occurred in the overall lattice. The deformation behavior of additively manufactured sheet I-WP lattice

was also discussed.

Keywords: Laser powder bed fusion; Co-Cr-Mo; sheet [-WP lattice; Compressive mechanical response; Strain-induced

martensitic transformation

1. Introduction

A lattice structure is defined as an architecture having
regularly repeated unit cells, and is applied in a wide range of
fields using the unit cell’s structural characteristics and intrin-
sic properties of the parent material [1-6]. Recent advances in
additive manufacturing (AM) technology have led to an ac-
celerated growth in the field of lattice structure. This is because
applying the AM technology in the syntheses of lattice removes
the restrictions on material selection and allows designing and
manufacturing of partial shapes freely [4,7-12]. In this regard,
laser powder bed fusion (LPBF) technology, a type of metal AMs,
is a method of stacking the material layer by layer on a powder
bed by irradiating laser and has the highest precision among the
metal AMs. [4,9-13].Several attempts have been made to over-
come the limitations of low mechanical properties due to nodes
of the existing strut-based lattice [14,15]. To this end, high-per-
formance, multi-purpose materials were employed via synthesis
of lattices of unique shape using the LPBF process. [10,16,17].

Ideal lattices that comprise a triply periodic minimal surface
(TPMS) as unit cell have recently attracted attention. TPMS is
defined as a 3D surface shape consisting of a minimal surface

[14,16,18-21]. Since TPMS has no node and consists of smooth
sheets, it has even stress distribution under an applied load, giv-
ing rise to excellent mechanical properties. Moreover, since two
independent spaces have an open pore structure, TPMS exhibits
a significantly higher specific surface area than conventional
lattices [14,16,18-21]. I-wrapped package (I-WP), a leading
TPMS model, was derived from the structure of BCC strut-based
lattice and is known to exhibit excellent rigidity and high energy
absorption characteristics among the TPMS models [14,20,21].

Co-Cr-Mo alloy is used in medical parts such as dental
implants and hip joint sockets and balls due to its excellent
biocompatibility and wear performance. [22-25]. It has been
reported that strut-based lattices applied a Co-Cr-Mo alloy
have longer fatigue life and more excellent energy absorption
efficiency than other biomaterials [26]. This is expected to be
related to the microstructural deformation behavior of Co-Cr-Mo
alloys, but studies related to this are very insufficient. In addi-
tion, when the Co-Cr-Mo alloy is applied to the TPMS model,
it is expected to exhibit better physical properties.

In the current study, sheet I-WP lattices were formed via
LPBF process using Co-Cr-Mo alloy, and the structure and
compression characteristics of the lattices were investigated.
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The findings were further compared with the characteristics of
LPBF-built bulk Co-Cr-Mo alloy to identify the deformation
behavior of the sheet I-WP lattice.

2. Experimental

Sheet-type I-WP model [14,19] was used as unit cell of size
1x1x1 mm?®. The lattice structure was composed of 5x5x5 unit
cells. To form thin sheets, no specification on the thickness of
the sheet was provided by the design but let the sheet be formed
along the path of irradiation of the laser in the LPBF process.

Spherical Co-29Cr-6Mo alloy powder feedstock (MTT
Technologies, Germany) was produced via gas atomization and
30 um or less sized particles were collected through sieving.
In the LPBF process, MCP HEK REALIZER (SLM Solutions
GmbH, Germany) equipment was used to prepare specimens
under the following conditions-layer thickness: 30.0 um, expo-
sure time: 0.17 ms, point distance: 640 pum, laser power: 90 W,
and scanning rate: 376 mm/s. And the scanning route of each
layer was specified to rotate clockwise along the lines defined
by the sheet cross-section.

Micro-computed tomography (u-CT, Skyscan, Aartselaar,
Belgium) was also performed under the condition of 100 kV,
100 pA, and 700 ms, and voxel size of 17.6 um, and reconfigured
itto a 3D model using the CTvox software (BRUKER). FE-SEM
(TESCAN, MYRA3 XMH) study was performed to observe the
cross-sectional shape of the specimens before and after deforma-
tion. The specimens were polished with 1200-4000 grit silicon
carbide papers and mirror-finished with a diamond suspension
of I um diamond and 0.04 um colloidal silica. Afterward, EBSD
analysis was done using an electron backscatter diffraction
detector (EBSD, OXFORD, Symmetry) fitted to the FE-SEM.
The EBSD data were processed with OIM analysis software
(TSL OIM analysis 8).

A room-temperature compression test was conducted at
initial strain rate of 13107 s~! using the Instron 8501 equipment
(Instron, USA). Compression was performed perpendicularly
to the building direction. To compare the mechanical properties
with the bulk alloy, bulk Co-Cr-Mo was manufactured through
the LPBF process under the same conditions with lattice, pro-
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cessed to pellets having 3 mm in diameter and 6 mm in height.
A compression test was conducted under the same conditions.
When comparing the mechanical properties of bulk and lattice
materials, a load was commonly applied perpendicular to BD to
minimize the effect of high anisotropy in LPBF-built metals [23].

3. Results and discussion

Fig. 1 (a) shows the computer-aided design applied to the
lattice manufacturing, and Fig. 1(b) displays the micro-CT image
of'the lattice manufactured by the LPBF process. The orientation
of the specimen was divided into the building direction (BD),
the longitudinal direction (LD and compressive direction), and
normal direction (ND) perpendicular to the BD and LD. The
produced lattice exhibited the pore shape of the I-WP model
well and was confirmed to have a smooth surface. The relative
density (RD), as calculated from the lattice’s weight and volume
and the true density of the Co-Cr-Mo alloy was 59.3%.

The SEM image of the cross-section of the sheet I-WP
lattice (Fig. 2(a)) was examined, and EBSD analysis of its
initial microstructure was performed. The results from three
representative areas are shown in Fig. 2 (b), (c) and (d). Cross-
sectional observation of the lattice revealed that the sheet thick-
ness was about 170 pm. Analysis of the phase map showed that
the measured fractions of the hexagonal closed packed (HCP)
phase and face-centered cubic (FCC) phase was 4.9% on aver-
age and 95.0% or more, respectively. For the Co-Cr-Mo alloy,
the HCP phase is known to be stable at 900°C or below [22].
However, the FCC phase was dominant in the specimen made
in the present study, which can be attributed to the high cooling
rate of the SLM process resulting in the metastable FCC phase
even at room temperature [22,23]. Analysis of the inverse pole
figure (IPF) map showed that the grains have a wide range of
size distribution and the grains in the outer region of the sheet
were relatively finer. Analysis of the kernel average misorienta-
tion (KAM) map and boundary angles revealed the presence of
local strains and low angle boundaries inside the grains which
were due to fast-cooling rate of the LPBF process. These low
angle boundaries and initial dislocations are believed to have
helped improve the strength of the lattice and bulk alloy [27].
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Fig. 1. Images of I-WP model: (a) computer aided design of unit cell and cell layer, (b) micro-CT analysis result of additively manufactured lattice
with cartesian coordination, and (c) the schematic diagram showing strategy of LPBF process
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Fig. 2. (a) Cross-sectional SEM micrograph of initial I-WP lattice, and (b), (c), (d) the EBSD analysis results (IPF, KAM and Phase map) of

representative areas

Fig. 3 shows compression test results of the bulk Co-Cr-Mo
and sheet I-WP lattice along with the compressive deformed
(about 40%) lattice (inset image of Fig. 3(b)). The macroscopic
observation of the deformed shape of the sheet I-WP lattice
showed the formation of double shear bands in “X” shape.
Although the degree of deformation varied with location,
horizontal deformation bands were formed similarly on each
cell layer and showed a tendency of collective failures. The
stress-strain curve of bulk Co-Cr-Mo showed a linear increase
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in flow stress after yielding, followed by fracturing after reach-
ing a strain of about 23.7% and a strength of 1.6 GPa. Due to
the relatively high RD of lattice, the stress-strain curve of sheet
[-WP lattices was Similar to that of the bulk specimens, which
showed near-linearly increased flow stress after yielding and
then gradual fracturing after reaching a strain of about 42.6%
and a strength of 630.1 MPa. The yield strengths of the bulk and
lattice were found as 8§10.4 MPa and 176.3 MPa, respectively.
According to Gibson and Ashby et al. [28], the relationship
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Fig. 3. Results of compressive test; (a) strain-stress curve of LPBF bulk Co-Cr-Mo alloy, (b) that of sheet [-WP lattice with compressively de-

formed (about 40%) lattice (inset image)
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between the relative density and yield strength of an open lat-
tice with relative density of 30% or more can be expressed by
Equation (1), which is known as modified Gibson-Ashby model.
Therefore, the yield strength can be obtained according to the
density from this equation.

5 T #1705
Poms Lo 14| 2
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Here, cr;, refers to the plastic yield strength of the lattice, and oy
refers to the yield strength of the bulk alloy. p “/p, refers to the
RD of the lattice. When RD was 59.3%, the estimated a;; was
150.7 MPa, indicating that the yield strength of the actual lat-
tice was 25.6 MPa higher. This signified that the strength of the
manufactured sheet I-WP lattice was higher than the relative
density and can be considered to be related to the geometrical
characteristics of I-WP or the deformation behavior of the ap-
plied alloy.

Fig. 4 shows the cross-sectional SEM image of the de-
formed sheet I-WP lattice and EBSD analysis results of the I-WP
deformation behavior. Observation of the KAM map showed
that deformation occurred in various locations of the lattice.
From the phase map study, the HCP phase fraction according
to location was measured as (b) 34.1% (c) 47.7% (d) 20.3%,
which shows a significant increase in the HCP fraction compared
to the initial fraction. This is related to the Co-Cr-Mo alloy’s
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strain-induced martensitic transformation (SIMT) deformation
behavior [22-25] caused by stacking fault energy of 15 mJ/m? or
lower. Such SIMT behavior resulted in a high strain-hardening
effect while accommodating strains through transformation of
inside grains, and thus, enabled the Co-Cr-Mo alloy to have an
excellent strength-ductility combination [22-26]. The excellent
strength-ductility combination and high strain-hardening rate
of the alloy applied to lattices not only delayed fracture due to
local strain but also accommodated the load evenly inside the
grains, leading to additional load energy absorption and improved
mechanical properties. In particular, since sheet I-WP had a col-
lective deformation mode that accommodated even deformation
throughout the structure, SIMT generation was expected to be
higher. In other words, LPBF Co-Cr-Mo sheet [-WP lattices were
determined to show excellent mechanical properties compared
to the relative density due to uniform deformation of the I-WP
shape and the synergetic effect of the SIMT behavior of the
Co-Cr-Mo alloy.

4. Conclusions

This study manufactured sheet I-WP lattices applying Co-
Cr-Mo alloy in the SLM process, investigated its mechanical
properties, and analyzed them in connection with the geometrical
features of the unit cell. Calculation of the yield strength com-
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Fig. 4. (a) Cross-sectional SEM image of deformed I-WP lattice, and (b), (c), (d) the EBSD analysis results (IPF, KAM and Phase map) of rep-

resentative areas considering I-WP’s deformation behavior



pared to the relative density by applying the modified Gibson-
Ashby model confirmed that the lattices exhibited excellent
specific strength. The results of the deformation behavior of the
sheet I-WP lattice showed that the deformation was uniformly
distributed throughout the structure. Microstructural study
after deformation showed that the load was accommodated by
generating a high SIMT fraction. As a result, it was suggested
that the LPBF Co-Cr-Mo based sheet I-WP lattice has excellent
specific strength.
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