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NGUYEN QUANG HOC', BUI DUC TINH', NGUYEN DUC HIEN?

THE MELTING AND THE DEBYE TEMPERATURE OF FOR BCC AND FCC METALS UNDER PRESSURE:
A CALCULATION FROM THE STATISTICAL MOMENT METHOD

We build the melting theory and the theory of the Debye temperature for defective and perfect cubic metals mainly based on
the statistical moment method. Our theoretical results are applied to metals Ni, Pd and Pt. Our calculations of melting temperatures
agree well with experiments and other calculations. Our other calculations are highly reliable.
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1. Introduction

Studying on the melting of the crystal is a classic problem.
Experimental techniques consist of the laser-heating diamond
anvil cell (LH DAC) [1] and the shock wave (SW) [2]. Main
theories and simulations are the molecular dynamics simula-
tion (MD) [3] and the ab initio calculations [4]. However, the
experiments do not agree with theoretical results for the melt-
ing of some transition metals [5]. At the melting point, many
physical quantities such as the atomic volume, the density, the
enthalpy, the entropy, etc. have jumps. Although some theoreti-
cal researchers tried to solve this problem [6,7], the obtained
results are still limited.

Researchers have been interested the melting of metals
Ni, Pd and Pt. At 0.1 MPa, The BCC structure of Ni has the lat-
tice constant @ = 3.5328x107'° m and the melting temperature
1728 K at 0,1 MPa. The experimental melting curve of Ni has
the constant d7/dP = 33 K/GPa up to 1923K and 6 GPa [8,9].
The melting curve of Ni was experimentally and theoretically
determined in [10-12]. The behavior of Ni was studied at room
temperature by calculation up to 34 TPa[13]. According to X-ray
diffraction study, the FCC structure of Ni is stable at 298K up to
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65 GPa [14] and up to 55 GPa for nanocrystalline Ni [15]. The
BCC structure of Pd has the lattice constant @ = 3.8902x 101" m
and the melting temperature 1827K at 0.1 MPa. The behavior
of Pd was studied by X-ray diffraction up to 80 GPa and 298 K
[16,17], by calculation [18] and in [19,20]. The FCC structure
of Pt has the lattice constant a =3.9239 x 10~' m and the melting
temparature 2057 K at 0.1 MPa. The behavior of Pt was studied
at melting by calculations [12,21-23]. The melting curve has an
initial d7/dP = 42 K/GPa up to 6 GPa and ~2300 K [24]. The
melting curve was presented by the equation 7(K) = 2057 +
27.2P —0.1497P2, where P is in GPa [25].

In recent years, many simulations and theoretical studies on
the influences of factors such as temperature, pressure, atomic
number, impurities,... on structural, mechanical; thermodynamic,
melting and electrical properties, phase transtions of metals, al-
loys and polymers have been published [26-37].

In this paper, we present the melting theory and the theory
of Debye temperature for cubic metals mainly builded by the
statistical moment method (SMM). Our theory is applied to
metals Ni, Pd and Pt. We compare and interpret the numerical
results obtained.
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2. Theoretical model

The Helmholtz free energy of cubic metals is equal to

[38,39]
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where U = 5 toatlo is the cohesive energy of an atom, N is the
total atomic number of the metal, 8 = kp, T, k3, is the Boltzmann
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constant, 7'is the absolute temparature, % = 2—, h is the Planck
V4

constant, w is the vibration frequency of atom at lattice point
node, £, y,, y, are parameters of the metal [38,39].

The cohesive energy u, the parameters &, y,, 7, and y for
cubic metals in the approximation of two coordination spheres
have the forms as in [38,39]

The state equations for cubic metals are determined by
[38,39,47]
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is the volume of cubic unit cell per atom
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for face-centered cubic (FCC) lattice and v =—-= is that for
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body-centered cubic (BCC) lattice. If knowing the interaction
potential between two atoms, we can find the solution of Eq. (2).
This is the nearest neighbor distance between two atoms 7 (P, 0)
at pressure P and temperature OK. From that, we can determine
the displacement of atom from the equilibrium position y (P, T)
and the nearest neighbor distance between two atoms (P, T)
at pressure P and temperature 7 [38,39]

1 (P,T)=ry (P,0)+y(P,T) 3)

The absolute stability limiting temperature for crystalline
state 7 is determined by [38-45]
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where ri; = r|(P,T) and y, = _n¥ ok is the Gruneisen pa-
6k or,
rameter of the metal. The melting temperature 7,, of the metal
is determined by [38-45]
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where ry,, =r|(P,T},,). a,, = a(P,T,).
The equilibrium vacancy concentration is given by
[43,45,46]
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Then, the melting temperature of defective metal is equal
to [43,45,46]
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The jump of volume at melting point of the metal is deter-
mined by [48]
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where ¢ is the metal constant and normally ¢ = 0.01 [48] and
(u)=y.
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We determine the slope a—}’)” from the melting curve 7,, (P)
of of defective metal calculated from Eq. (7). After that, we use

the Clapeyron-Clausius equation to find the jump of enthalpy
and entropy at melting point
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The isothermal compressibility, the thermal expansion
coefficient and the heat capacity at constant volume and the
Gruneisen parameter of cubic metals have the forms [38,39]
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Therefore, from r(P,T) we can find V(P,T), yr(P,T),
ar(P,T), Cy(P,T), va y5(P,T). The Gruneisen parameter
v (P, T) has the form [49]
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where ¢ is the material constant and ¢ > 0. The Gruneisen pa-
rameter is also defined by [38,39,47]
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where @), = is the Debye frequency. The Debye tempera-

ture T is equal to [47,50]
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3. Numerical results and discussions

For metals Ni. Pd and Pt, we use the Mie-Lennard-Jones
(MLJ) n-m potential

=320 (2] (2] |

where r, is the distance between two atoms corresponding to
minimum energy potential taking the value of —D, m, n are
different numbers for different metals and are determined by
empirical way on the basis of experimental data. The MLJ
potential’s parameters D, rq, m, n for Ni. Pd and Pt are given
in TABLE 1 [51,52]. Our calculated results are summarised in
tables from TABLE 2 to TABLE 5 and illustrated in figures
from Fig. 1 to Fig. 7.

(18)
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TABLE 1
The MLJ potential’s parameters for Ni, Pd and Pt [51,52]

Interaction Dlkg, (K) ro (1071 m) m n
Ni-Ni [51] 4325.16 2.4780 8.0 9.0
Pd-Pd [52] 7667.06 2.7432 2.89 11.85
Pt-Pt [52] 11366.40 2.7689 2.44 14.17
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Fig. 1. T,,(P) for Ni determined by SMM calculations, experimetal data
[57] and other calculations [53-56]

In Fig. 1, the melting temperature 7,,(P) of Ni is calculated
by SMM according to the model of perfect crystal from Eq. (5),
SMM according to the model of defective crystal from Eq. (7),
MD of Koci et al. (2006) [53] and Luo et al. (2010) [54], ab initio
of Pozzo va Alfe (2013) [55], calculations in quasi-harmonic
approximation (QA) and from Lindemann law of Minakov
and Levashov (2015) [56], experiments from X-ray diffraction
(XRD) and temperature versus laser power (TvsLP) plateau of
Lord et al. (2014) [57].
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Fig. 2. T,,(P) for of Pd determined by SMM calculations, experimetal
data [61] and other calculations [58-60]
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In Fig. 2, the melting temperature 7,,(P) Pd is calculated
by SMM according to the model of perfect crystal from Eq. (5),
SMM according to the model of defective crystal from Eq. (7),
MD of Jeong va Chang (1999) [58] and Liu et al. (2015) [59],
ab initio of Liu et al. (2011) [60] and va DAC experiments of
Errandonea (2013) [61].
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Fig. 3. T,,(P) for Pt determined by SMM calculations, experimetal data
[61,64] and other calculations [58,62,63]

In Fig. 3, the melting temperature 7,,(P) of Pt is calculated
by SMM according to the model of perfect crystal from Eq. (5),
SMM according to the model of defective crystal from Eq. (7),
MD of Jeong and Chang (1999) [58], ab initio Z method of
Belonoshko and Rosengren (2012) [62], calculations from
Lindemann law of Hieu (2014)[63] and DAC experiments of
Kavner and Jeanloz (1998) [64] and Errandonea (2013) [61].

Our SMM calculations of 7,,(P) according to the models
of perfect and defective crystals are in good agreement with ex-
periments from DAC and other calculations from MD, ab initio,
Lindemann law and ab initio Z method. The higher the tempera-
ture, the larger the difference of the melting curve between the
perfect metal and the defective metal. In the range from zero to
100 GPa, the maximum differences obtained for Pt, Ni and Pd
are 13.3%, 17.5% and 20.18%, respctively. The maximum er-
rors of the melting temperature between the SMM calculations
according to the model of defective crystals and experiments
for Pt, Ni and Pd are below 8.7%, 7.5% and 4.6%, respectively.

Our SMM calculations of 7,,(P), (07T,,)/(0P), Av,,, AH,,
and AS,, for Pt, Ni and Pd are determined from Fig. 1, Fig. 2 and
Fig. 3 and are summarized in TABLE 3, TABLE 4 and TABLE 5.
When pressure increases from zero to 60 GPa, T, increases from
2253 Kt03903.3 for Pt, from 1787 K to 3096 K for Ni and from
1925 K to 3548.2 for Pd; (07,,) /(OP) decreases from 31.12 K/GPa
to 21.54 K/GPa for Pt, from 28 K/GPa to 18.2 K/GPa for Ni
and from 33.88K/GPa to 17.66 K/GPa for Pd; Av,, calculated
from Eq. (8) decreases from 1.384x1072" m3 to 1.158x1072" m?
for Pt, from 1.232x107*" m? to 0.909x1073° m? for Ni and from

1.383x107 m? to 1.100x107*° m? for Pd; AH,, calculated from
Eq. (9) increases from 100.2 meV to 209.84 meV for Pt and from
78.56 meV to 221.01 meV for Pd; AS,, calculated from Eq. (10)
changes from 0.0445kp to 0.0537kp for Pt, from 0.044k; to
0.05kp for Ni and 0.041k5 to 0.062kp for Pd. The nearest neigh-
bor distances between two atoms for metals, substitutional and
interstitial alloys calculated from the SMM are in good agreement
with experiments and other calculations in many previous papers
[26-28,38-48]. The melting temperature for Pt, Ni, Pd calculated
from the SMM also are in good agreement with experiments and
other calculations in this paper. Therefore, we hope that the jumps
of physical quantities obtained in this paper are highly reliable.

The nearest neighbor distance, the isothermal compress-
ibility, the thermal expansion coefficient, the heat capacity at
constant volume, the Gruneisen parameter and the Debye tem-
perature of Ni at 7= 300K and under pressure are summarized
in Table 2. These quantities for Pt are illustrated on figures from
Fig. 4 to Fig. 6. The isothermal compressibility, the thermal ex-
pansion coefficient, the heat capacity at constant volume and the
Gruneisen parameter for metals under temperatures and pressure
are in good agreement with experiments and other calculations
(for example see [39]). Therefore, the Debye temperature of
metals calculated from these quantities also are highly reliable.

TABLE 2
1 (10719 m), 37 (1072 Pa™'), a7 (107° K ™), Cy (J/mol-K), 76
and T (K) for Ni at 7= 300K and under pressure

T(XK) (GI;a) r AT ar Cy 76 Tp
0 2.4661 | 7.0872 | 2.228 |23.086|2.6092|399.20
20 [2.3983(3.8383 | 1.181 |21.914|2.4745|493.68

300 K 40 [2.3564|2.7005| 0.814 |20.963 | 2.4035 | 561.88
60 [2.3257(2.1046| 0.621 |20.131|2.3569 | 617.58
80 [2.30121.7334| 0.501 | 19.379|2.3228 | 665.64
0 2.4910(9.0739 | 2.670 |25.189|2.3066|364.13
20 (2.4131(4.3722| 1.411 |24.881|2.3281|454.16

1000K | 40 [2.3674|2.9611| 0.995 |24.719|2.3037|517.84
60 [2.3345]2.2628 | 0.781 |24.595]2.2802 | 569.11
80 [2.3087|1.8412| 0.648 |24.489|2.2601 | 612.92

According to Fig. 4a, 4b, 5a, 5b, 6a and 6b for Pt at the
same temperature, quantities such as the nearest neighbor dis-
tance, the isothermal compressibility, the thermal expansion
coefficient, the heat capacity at constant volume decrease and
the Debye temperature increases with the increase of pressure.
The decrease of the thermal expansion coefficient at higher
temparatures is smaller than that at lower temparatures. For Pt at
the lower temperatures (300K, 500K) when pressure increases,
the Gruneisen parameter not significantly decreases. For Pt at
the higher temperatures (from 1000K to 2000K)) when pressure
increases, the Gruneisen parameter nonlinearly increases. The
increase of the Debye temperature is nonlinear.

For Pt at the same pressure, quantities such as the nearest
neighbor distance, the isothermal compressibility, the thermal
expansion coefficient, the heat capacity at constant volume in-
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crease, the the Gruneisen parameter and the Debye temperature
decrease with the increase of pressure.

According to tables from TABLE 3 to TABLE 5 and Fig. 7,
the jump of volume at melting point for Pt, Ni and Pd nonlinearly
decreases wth the increase of pressure. At the same pressure,
the jump of volume at melting point for Pt is larger than that
for Pd and the jump of volume at melting point for Pd is larger
than that for Ni.

P (GPa)
Fig. 7. Av,,(P) for Pt, Ni and Pd at 7= 300 K

TABLE 3
T, (0T,)/(0P), Av,,, AH,, and AS,, for Pt under pressure
P (GPa) 0 30 50 60
T, (K) 2253 31323 | 3666.6 | 3903.3
(0T,,)/(6P) (K/GPa) | 31.12 28.40 21.64 21.54
Av,, (1070 m?) 1.384 1.206 1.17 1.158
AH,, (meV) 10020 | 133.01 | 19824 | 209.84
AS,, (kg) 0.0445 | 0.0425 | 0.054 | 0.0537
TABLE 4
T, (0T,,)/(0P), Av,,, AH,, and AS,, for Ni under pressure
P (GPa) 0 30 50 60
T, (K) 1787 2312 2739 3096
(0T,,)/(6P) (K/GPa) | 28.0 252 21.0 18.2
Av,, (10730 m?) 1.232 0.973 0.925 0.909
AS,, (kg) 0.044 | 0.0386 | 0.044 0.05
TABLE 5
T, (0T,,)/(0P), Av,,, AH,, and AS,, for Pd under pressure
P (GPa) 0 30 50 60
T, (K) 1925 28574 | 3114.4 | 35482
(0T,,)/(6P) (K/GPa) | 33.88 23.92 17.68 17.66
Av,, (1079 m?) 1.383 1.147 1.126 1.100
AH,, (meV) 78.56 137.02 | 19835 | 221.01
AS,, (kg) 0.041 0.046 0.064 0.062

4. Conclusion

We present the melting theory and the theory of Debye
temperature for perfect and defective cubic metals under pres-
sure mainly derived from the SMM. The SMM calculations of
melting temperatures for Ni, Pd and Pt agree well with available
experimental and theoretical data. Our SMM calculations of
other physical quantities such as the jumps of volume, enthalpy
and entropy at melting point, the isothermal compressibility,
the thermal expansion coefficient, the heat capacity at constant
volume, the Gruneisen parameter and the Debye temperature for
Ni, Pd and Pt in the range from 300 to 2000K and from zero to
100 GPa are highly reliable.
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