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A NEW NEURAL NETWORKS MODEL FOR CALCULATING THE CONTINUOUS COOLING 
TRANSFORMATION DIAGRAMS

The article shows a new model of Continuous Cooling Transformation (CCT) diagrams of structural steels and engineering 
steels. The modelling used artificial neural networks and a set of experimental data prepared based on 550 CCT diagrams published 
in the literature. The model of CCT diagrams forms 17 artificial neural networks which solve classification and regression tasks. 
Neural model is implemented in a computer software that enables calculation of a CCT diagram based on chemical composition 
of steel and its austenitizing temperature. 
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1. Introduction

Knowledge of austenite transformation kinetics occur-
ring during continuous cooling of steel from the austenitizing 
temperature presented at CCT diagrams helps determine the 
conditions of operations such as hardening, normalising or full 
annealing. The position and shape of austenite transformation 
curves marked on CCT diagrams depend primarily on the chemi-
cal composition of steel, the starting condition of material and 
the conditions of austenitizing [1]. Knowledge of transformation 
of a supercooled austenite occurring in the steel with a known 
chemical composition is also important during modelling of 
the heat treatment. Based on CCT diagrams, often parameters 
of phase transformation models are calculated. The ability to 
calculate a CCT diagram is an alternative to dilatometric and 
metallographic investigations. It shortens the time required to 
get results and reduced the costs of laboratory tests.

In 1944, Payson and Savage published an equation that 
enabled calculation of the martensitic start transformation tem-
perature Ms based on chemical composition of the steel [2]. The 
researchers used the multiple regression method and Greninger 
test results [3], as well as Greninger and Troiano testing [4]. 
Further regression models were formed based on larger datasets 
and differed ranges of values of independent variables for which 
they could be used. In addition to multiple regression, artificial 
neural networks (ANN) started to be used [5-7]. 

CCT diagrams are developed in laboratories of many coun-
tries and published in atlases, guidebooks and academic works. 
The collection of data on transformations of a supercooled aus-
tenite increases regularly starting from the works of Davenport 

and Baine [8]. It offers an opportunity to prepare a representative 
set of data and use regression methods such as artificial neural 
networks or multiple regression to develop CCT diagram models. 
New models are still being proposed, based on both theoretical 
considerations and methods using empirical data. These models 
can be used in a wide range of mass concentrations of the ele-
ments or dedicated to a specific group of steels. 

The first original method for calculation of CCT diagrams 
while using artificial neural networks is shown, among others, in 
the works of [9-11]. Acquiring new empirical data and analyzing 
verification calculations made in the next few years convinced 
the author to reconsider the solutions of that time. The CCT 
diagram set was largely increased while changing their digitali-
zation, improving the design of artificial neural networks and 
developing a new base of rules used to determine the temperature 
of the transformations. As a result, a new neural model of CCT 
diagrams was developed, which consists of 17 neural networks 
that solve classification and regression tasks. The model was 
implemented in a computer software to calculate CCT diagrams. 

2. Data and method

It was assumed that a CCT diagram of steel with a known 
chemical composition, austenitized in set conditions, can be 
calculated based on results of the models below:
• Start temperature of pearlite transformation into austenite 

while heating Ac1, 
• Finish temperature of ferrite transformation into austenite 

while heating Ac3,
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• Maximum temperature at which the austenite is transformed 
into bainite Bsmax,

• Martensite start temperature Ms,
and for a determined cooling rate: 
• Start and finish temperatures of transformation of: austenite 

into ferrite Fs, Ff, austenite into pearlite Ps, Pf, austenite into 
bainite Bs, Bf,

• Start temperature of austenite transformed into martensite 
Ms(vc),

• Steel hardness,
• Volume fraction of: ferrite F(%), pearlite P(%), bainite 

B(%) and martensite M(%).
Calculation of transformation temperature curves on a CCT 

diagram required transformation temperature to be calculated 
and the range of cooling rate to be determined. The solution 
was offered that introduced classifiers to the model. The goal 
of the classifiers was to determine if the analyzed transforma-
tion occurs in a steel with a known chemical composition and 
known austenitizing temperature under cooling at a set rate. 
Four classifiers were developed where the dichotomic output 
variable described the transformation: ferritic (Wf), pearlitic (Wp), 
bainitic (Wb) and martensitic (Wm). Thus, the data on the type of 
microstructure constituents occurring in the steel after cooling 
at a set rate was acquired. The calculations of neural classifiers 
were used to calculate: the transformations temperature, hardness 
and volume fraction of structural constituents. According to the 
assumptions, a neural model of CCT diagrams consisted of 17 
neural networks, including four classifiers. 

Developing a neural model of CCT diagrams required 
representative set of empirical data. Preparation of a dataset 
started from determining the variables representing the model. 
The selection of independent variables should be supported by 
knowledge on the modelled process. Also, vectors including 
examples to calculate model parameters and model testing must 
include all variables. To satisfy these assumptions, it was neces-
sary to assume simplifications related to the number of variables. 
The data regarding the austenitization time and austenite grain 
size was dismissed since it was not provided on most CCT 
diagrams that were the sources of data. It was assumed that the 
model independent variables will be the mass concentrations 
of the elements: C, Mn, Si, Cr, Ni, Mo, V, Cu and austenitizing 
temperature. Another variable that needed to be included already 
at digitalization of CCT diagrams was the cooling rate. 

The dataset prepared within the work [9] was complemented 
with new examples. A total of 550 CCT diagrams published in 
the literature was collected. The range of independent variables 
for which the developed models can be used was analyzed. It was 
tested if the examples for developing and testing of a model even-
ly cover the whole field of approximated functions. Any missing 
values were complemented or additional conditions restricting 
the model use were determined. Distributions of independent 
variables were reviewed based on descriptive statistics, scatter 
plots and histograms made for one and two variables. Within 
descriptive statistics the minimum and maximum values, the 
mean value, standard deviation, median, skewness and kurtosis 

were analyzed. A verification set consisting of 25 CCT diagrams 
was created. The data from this set were not used to calculate 
model parameters. It was only used for numerical verification 
of developed models. 

The range of mass concentrations of the elements and 
austenitizing temperature in which the model can be used is 
shown in Table 1. Based on statistical analysis of data, ad-
ditional conditions restricting the model use were determined 
(Table 2).

TABLE 1

Ranges of mass concentrations of elements

Mass fractions of elements, %, 
TA,°C

C Mn Si Cr Ni Mo V Cu
min 0.1 0.28 0.13 0 0 0 0 0 780
max 0.68 1.98 1.9 2.5 3.85 1.05 0.38 0.38 1050
TA – austenitizing temperature, °C

TABLE 2

Additional conditions for limiting the scope of model application

Mass fractions of elements, %,
Mn+Cr Mn+Cr+Ni Cr+Ni Mn+Ni

max 3.6 5.6 5.3 4.5

A dataset prepared to develop the model was divided into 
the training, validation and testing sets. The data from the train-
ing set was used to determine the value of connection weights 
between neurons while training. The validation set was used to 
verification the neural network while training, and the testing set 
was used to verification the quality of a neural network after its 
design. The ratio of division into sets: training, validation and 
testing set, was assumed as 2:1:1.

After analyzing the results of initial calculations, further 
discussion was limited to Multi-Layer Perceptron (MLP) net-
work with one hidden layer.

The design of an artificial neural network, preceded with 
preparation of dataset was divided into the following stages 
performed multiple times:
• selection of dependent and independent model variables;
• determining the method for coding nominal variables (if 

applies);
• determining the number of neurons in the hidden layer;
• determining: the form of error function, activation function, 

PSP – Post Synaptic Potential function, variable scaling 
methods; 

• training a neural network combined with analyzing the 
significance of independent variables; 

• model evaluation.
The following algorithms to training the artificial neural 

networks were used: backpropagation (BP), quick propagation 
(QP), conjugate gradients (CG), Lavenberg-Marquardt (LM), 
quasi-Newton (QN) and delta-bar-delta (DD). While training, 
the value of the Root Mean Square (RMS) error was analyzed. 
A change of the RMS error was noted in the next training epochs 
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for the training and validation sets. Training was stopped when 
the error for the validation set increased.

The significance of independent variables was assessed 
based on the quotient of the estimated error made by a neural 
network without analyzed variable and an error made by the neu-
ral network for all input variables. An independent variable was 
considered significant if the quotient calculated for the training 
set and the validation set was higher than 1. The models included 
only significant variables. The values of statistics used to assess 
the significance of independent variables on the example of the 
Ms temperature model is shown in Table 3. The table contains 
the statistics for variables considered as significant. The error 

describes an estimated RMS error for a neural network as if the 
analyzed variable was dismissed. 

The start and finish temperature lines of austenite transfor-
mation are calculated independently by seven neural networks. It 
should be assumed that every result is subject to an error which 
may lead to unsatisfied condition (1):

 Fs > Ff ≥ Ps > Pf ≥ Bs ≥ Bf ≥ Ms ( 1)

On CCT diagrams, transformations of a supercooled austen-
ite occur one by one or are divided by an austenite area. For the 
same cooling rate, the start and finish of the next transformation 
may be characterized by the same temperature: Ff –Ps, Ff –Bs, 
Pf –Bs, Bf –Ms. Considering the previous calculation error and 
condition (1), rules to determine the transformation temperatures 
shown in a CCT diagram were defined. The algorithm is shown 
in Figure 1. The rules are performed according to the sequence 
of numbers 1-4. It was assumed that the same value will be as-
sumed for the transformation finish and start temperature if the 
absolute difference between the calculated temperatures will be 
lower than the total of mean absolute errors for respective mod-
els. The final temperature was calculated as a weighted average 
assuming an absolute error Ei as weight (where: i = Fs,Ff,Ps, 
Pf,Bs,Bf,Ms) for individual models. 

Fig. 1. Algorithm for determining the temperatures of start and finish of the transformations

TABLE 3

Example of significance assessment of independent variables 
for the Ms temperature model

Data sets Statistic
Independent variable

C Mn Cr Ni Mo V

training
error, °C 55.3 23.9 21.5 27.2 19.3 19.6

ratio 2.91 1.26 1.13 1.43 1.03 1.04

validating
error, °C 57.2 25.1 19.9 23.8 19.7 18.9

ratio 3.04 1.33 1.05 1.26 1.05 1.03
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3. Calculation results

The neural networks in regression tasks were evaluated 
based on the mean absolute error of neural network forecast, 
standard deviation of neural network forecast error, Paerson cor-
relation coefficient and the quotient calculated for the standard 
deviation of the forecast error and the standard deviation of the 
dependent variable. The quotient of standard deviations allows 
to relate an error made by the neural network to the range of 
dependent variable. The ideal value of this statistics is 0. Neu-
ral networks in classification tasks were assessed based on the 
correct classification coefficient and the area under the ROC 
(Receiver Operating Characteristic) curve. The correct classifi-
cation coefficient was calculated as the quotient of a number of 
correct network classifications and all cases in a set. The ROC 
curve allows to assess the two-state classifier for all possible 
thresholds determining the border between the classes. In case of 
an perfect classifier, its value is 1. All statistics were calculated 
for the training set, validation set and testing set. The network’s 

ability to generalize the knowledge acquired in the training 
process, is confirmed by similar statistics for the training set, 
validation set and the testing set, respectively. The better values 
of statistics for the training set may be a sign of an overfitting 
neural network. Most important information on neural classifiers 
and networks performing regression tasks are shown in Table 4 
and Table 5. Tables 6-9 show the statistics for evaluating neural 
networks. The tables provide statistics for the testing set. The 
hardness model is shown also in the work [12].

TABLE 6

Quality assessment coefficients for models, used as classifiers for 
determining the types of occurring transformations (testing set)

Transformation areas, output variable
Ferritic

Wf

Pearlitic
Wp

Bainitic
Wb

Martensitic
Wm

CCC, % 0.89 0.91 0.84 0.86
ROC 0.957 0.967 0.915 0.934

CCC – Coeffi cient of correct classifi cations

TABLE 7

Statistic values used to evaluate the transformation temperature 
models (testing set)

Dependent 
variable

Mean 
absolute 
error,°C

Standard 
deviation of 
the error,°C

Ratio of 
standard 
deviations

Correlation 
coeffi cient

Ac1 12.8 15.9 0.62 0.79
Ac3 12.5 15.4 0.46 0.90

Bsmax 18.6 22.9 0.40 0.92
Ms 13.6 19.1 0.37 0.93
Fs 17.1 23.2 0.44 0.90
Ff 20.1 26.3 0.50 0.86
Ps 14.8 19.0 0.44 0.90
Pf 21.8 28.9 0.56 0.82
Bs 24.2 31.2 0.55 0.83
Bf 25.9 34.3 0.59 0.80

Ms(vc) 15.6 21.4 0.37 0.93

TABLE 8

Statistic values used to evaluate the hardness model (testing set)

Mean 
absolute 

error, HV

Standard 
deviation of the 

error, HV

Ratio of 
standard 
deviations

Correlation 
coeffi cient

Hardness 33.1 48.9 0.30 0.95

TABLE 9

Statistic values used to evaluate model of the microstructural 
constituents (testing set)

Structural 
constituent

Mean 
absolute 
error,%

Standard 
deviation of 
the error,%

Ratio of 
standard 
deviations

Correlation 
coeffi cient

Ferrite 7.8 12.3 0.48 0.88
Pearlite 6.6 10.9 0.38 0.92
Bainite 12.7 18.0 0.55 0.84

Martensite 8.8 14.2 0.34 0.94

TABLE 4

Specifications of the developed classifiers based on neural 
networks

Dependent 
variable

ANN output

Independent 
variables

ANN inputs

ANN 
structure

Training 
method/No of 

epochs
Wf

C, Mn, Si, Cr, 
Ni, Mo, V, Cu, 

TA, vc

10-8-1 BP/50, CG/330
Wp 10-8-1 BP/50, CG/119
Wb 10-10-1 BP/50, CG/188
Wm 10-6-1 CG/100

vc – cooling rate, °/min

TABLE 5

Specifications of the neural networks used for regression tasks

Dependent 
variables

ANN output

Independent variables
ANN inputs

ANN 
structure

Training 
method/No of 

epochs
Ac1 C, Mn, Si, Cr, Ni, Mo, 

V, Cu
8-4-1 BP/50, CG/78

Ac3 8-5-1 BP/50, CG/162

Bs max
C, Mn, Si, Cr, Ni, 

Mo, V 7-10-1 CG/125 LM/20

Ms C, Mn, Cr, Ni, Mo, V 6-6-1 LM/296
Fs C, Mn, Si, Cr, Ni, Mo, 

V, Cu, TA, vc

10-10-1 BP/50, CG/396
Ff 10-9-1 BP/50, CG/307

Ps
C, Mn, Si, Cr, Ni, Mo, 

V, vc
8-8-1 LM/760

Pf
 C, Mn,Si,Cr,Ni, Mo,V, 

Cu,TA,vc
10-5-1 BP/50, CG/437

Bs
C, Mn, Si, Cr, Ni, Mo, 

V, TA, vc
9-14-1 BP/50, CG/471

Bf
C, Mn, Si, Cr, Ni, Mo, 

TA, vc
8-15-1 QN/534

Ms(vc)
C, Mn, Cr, Ni, Mo, V, 

Cu, TA, vc
9-5-1 LM/460

Hardness C, Mn, Si, Cr, Ni, Mo, 
V, Cu, TA, vc, Wf, Wp, 

Wb, Wm

14-10-1 BP/50, CG/489
F(%), P(%), 
B(%), M(%) 14-16-4 CG/320
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The temperature models of transformations, hardness, 
volume fractions of ferrite, pearlite, bainite and martensite in 
a steel developed with the method of artificial neural networks 
were used in a computer software to calculate CCT diagrams. 
The program shown in the work [13] was modified. All functions 
performing calculations were replaced with a new source code 
based on neural networks herein. The input data to the program 
are mass concentrations of the elements and the austenititzing 
temperature that can be introduced by the user or calculated. 
The program calculates the austenitizing temperature based 
on Ac3 temperature (by default: Ac3+50°C). The austenitiz-
ing temperature also may be entered by the user. Figures 2-5 
show the examples of CCT diagrams that are experimental 

and were calculated with a computer program. The diagrams 
presented in the article were chosen randomly from the verifi-
cation data set. In order to compare the results of calculations 
with experimental diagrams, the austenitizing temperature 
such as in the experimental diagrams was used to calculate 
CCT diagrams.

In the Figures 4 and 5 it can be seen that the algorithm used 
to draw CCT diagrams requires some correction. The incorrect 
operation of the algorithm is visible for the start temperatures 
of transformation of austenite into ferrite (Fig. 4) as well as the 
finish temperatures of pearlitic transformation (Fig. 5). The 
problem may be solved by an increase in the number of cooling 
rates for which the temperature values of transformations are 

Fig. 4. CCT diagram calculated for steel with a mass concentration of elements: 0.49%C, 0.9%Mn, 0.23%Si, 1.03%Cr, 0.21%V, austenitised at 
temperature of 840°C

Fig. 2. CCT diagram determined experimentally for steel with a mass 
concentration of elements: 0.49%C, 0.9%Mn, 0.23%Si, 1.03%Cr, 
0.21%V, austenitised at temperature of 840°C [14]

Fig. 3. CCT diagram determined experimentally for steel with a mass 
concentration of elements: 0.30%C, 0.64%Mn, 0.22%Si, 1.01%Cr, 
0.11%Ni, 0.24%Mo, austenitised at temperature of 850°C [14]
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calculated and the use of the results of these calculations to de-
termine the trend line. Currently, work is underway to check this 
solution.

4. Summary

The paper shows the selected major information on the new 
neural model of CCT diagrams for structural and engineering 
steels. The detailed information on the set of experimental data, 
modelling method and statistics for review of the model, includ-
ing the statistics for the verification set as well as information 
about the computer program are shown in the work [15].

The presented model of CCT diagrams forms 17 neural net-
works. In case of enlarging or modifying a set of CCT diagrams, 
training process of neural networks can be continued. Datasets 
for training and testing of neural networks and the computer 
program code was prepared so to allow their modification. The 
CCT diagram model was developed also with multiple regres-
sion and logistic regression. The modelling uses the same set 
of experimental data. Equations to calculate CCT diagrams are 
shown in the works [15-17]

The final modeling stage should be the experimental veri-
fication of developed dependencies so further work is planned 
connected with the experimental verification of calculations with 
a dilatometric method for commercial steels and model alloys.

The increasing popularity of computational intelligence 
methods in many fields of science and engineering is also re-
flected by the area of materials engineering [18-25].Use of hybrid 
methods is an important trend related to modelling in materials 
engineering [26-29]. The numerically verified models are used 
to calculate the chemical composition of steel with required 

transformation temperatures and hardness of steel cooled con-
tinuously from the austenitizing temperature. To identify mass 
concentrations of the elements, the hybrid method that uses 
artificial neural networks and the genetic algorithm were used. 
Method and results are shown in the work [15].
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