DOI: 10.24425/amm.2018.125104

Z. YAN-LING*, G. MING*#, L. FENG-SHAN*, Y. KAN*

ENRICHMENT, SEPARATION, AND RECOVERY OF PHOSPHORUS FROM DEPHOSPHORIZATION SLAG

A better understanding of phosphorus distribution in slag is necessary to develop an effective way to treat dephosphorization slag formed during steelmaking. Here, previous studies on the enrichment, separation, and recovery of phosphorus from dephosphorization slag are reviewed, along with their influencing factors. The results suggest that a proper heat treatment can promote the selective enrichment and growth of P-rich phases. Further, adding P_2O_5 and Fe_tO facilitates phosphorus enrichment. Also, $Ca_3(PO_4)_2$ is precipitated from slag containing 18 wt% P_2O_5 . MnO and MgO in the slag barely affect the phosphorus recovery. In contrast, the addition of Al_2O_3 and TiO_2 significantly affects phosphorus enrichment and magnetic separation. A phosphorus recovery rate of more than 70% is achieved with the addition of $10 \text{ wt}\% Al_2O_3$ or $10 \text{ wt}\% TiO_2$. New phases (Na₂Ca₄(PO₄)₂SiO₄, Na₃PO₄, and Ca₅(PO₄)₃F) tend to be formed on the addition of Na₂O and CaF₂, which promote phosphorus enrichment. However, the addition of Na₂O and CaF₂ results in the incomplete separation of phosphorus and iron, as CaF₂ and Na₂O improve slag metallization and the magnetism of iron-rich phases.

Keywords: phosphorus enrichment, selective enrichment and growth, P-rich phase, magnetic separation

1. Introduction

Dephosphorization is a critical step in steelmaking. Dephosphorization slag based on CaO-Fe_tO-SiO₂ has high basicity (R) and Fe_tO content. However, the recycle/reuse of this slag is greatly limited by the circulation and enrichment of phosphorus, generating possible contamination in the liquid steel. Therefore, a better understanding of the phosphorus distribution and separating P are very important to promote the reutilization and treatment of dephosphorization slag formed during steelmaking.

Previous studies have proposed many methods of dephosphorization, such as gasification, addition of reductants [1], and floating separation [2]. Additionally, phosphorous is reduced and dissolved in liquid iron to decrease its content in slag [3]. However, few studies have focused on the effective recovery of phosphorus. Furthermore, the phosphorus content in slag is low (4-7%) and dispersed, making it difficult to recover phosphorus for other applications, such as the production of phosphate fertilizers [4]. Therefore, it is necessary to promote the enrichment, growth, and effective recovery of phosphorus from dephosphorization slag. Sui [5-6] has proposed the selective enrichment and separation of phosphorus based on the extraction of valuable components. According to this mechanism, by selectively gathering the dispersed components in the target phase, the efficiency of separating valuable components increases. Similarly, phosphorus is selectively gathered in the P-rich phase. This process improves the enrichment rate and separation efficiency

of phosphorus. Most recent studies [7-12] have focused on the effect of slag basicity, slag composition (MgO, MnO, P_2O_5 , Fe_tO), and additives (Na₂O, CaF₂, Al₂O₃, TiO₂) on the selective enrichment, growth, and separation of phosphorus along with the mechanism of phosphorus enrichment [18-21]. However, most of the above studies have focused on laboratory investigations. Therefore, research on the resource utilization of P in industrial production is scarce.

To effectively recycle Fe and P of dephosphorization slag, the effects of slag basicity, slag composition, and additives on the enrichment, separation, and recovery of phosphorus are reviewed. Besides, the challenges and factors associated with "phosphorus enrichment and growth – separation – recycling" have been considered.

2. Properties of dephosphorization slag

2.1. Phase structure of dephosphorization slag

CaO-Fe_tO-SiO₂ slag consists of a P-rich phase, matrix phase, and RO phase [18,19]. As shown in Fig. 1, the P-rich phase in the slag is mainly in the form of a $nCa_2SiO_4 \cdot Ca_3(PO_4)_2$ solid solution (nC_2S-C_3P) and the P₂O₅ content in this solid solution is more than 20% [20,21]. The white RO phase is mainly composed of iron oxides or Fe-Mn oxides. Extra phosphorous is present in the matrix phase.

^{*} UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, STATE KEY LABORATORY OF ADVANCED METALLURGY BEIJING 100083, CHINA

[#] Corresponding author: gaoming0309@163.com

Fig. 1. Main phases in slag (1: matrix phase, 2: RO phase, 3: P-rich phase) [19]

2.2. Factors influencing phase structure

2.2.1. Slag Basicity

Slag basicity mainly affects the formation of xCaO·SiO₂ phase. Then the following phenomenon will happen. Firstly, the C₃S phase is formed in high-basicity slag [8]. Meanwhile, the C₃S reacts with P₂O₅ and CaO in slag to form nC₃S-C₃P. With

decreasing slag basicity, the C₃S content decreases and the C₂S phase is formed. Similarly, solid C₂S particles dissolve in the slag, and the nC_2S-C_3P phase is generated. Subsequently, the C₂S phase disappears in low-basicity slag, and a new CS phase is generated, which leads to a decrease in the nC_2S-C_3P content. The P₂O₅ content in the phases gradually increases in the order of $nC_3S-C_3P < nC_2S-C_3P < C_3P [8,36]$.

Lin [8] has analyzed the influence of SiO₂ modification on phosphorus enrichment in P-bearing steelmaking slag (P₂O₅ = 10 wt%). According to Fig. 2a, C₃S appears at R = 4 and disappears when R = 1-3. Then, C₂S and nC₂S-C₃P are formed at 1623 K (R = 2.5) as shown in Fig. 2b-d. Finally, CS is formed when R < 1.5. Son [36] has also reported that nC₂S-C₃P is generated in CaO-Fe_tO-SiO₂-5 wt% P₂O₅ slag (Fe_tO = 15-20 wt%) at R = 1 and R = 1.5. Therefore, the optimal basicity for generating nC_2 S-C₃P is 1.5-2.5. Under favorable dynamics conditions, more P₂O₅ accumulates near C₂S particles at higher temperatures [31]. Therefore, the phosphorus content in the P-rich phase at 1400°C is higher than that at 1350°C [15].

2.2.2 Slag Composition

Previous studies have reported that MnO and MgO mainly enter into the RO phase to form MgFe₂O₄ and MnFe₂O₄, and different P₂O₅ and Fe_tO contents affect the form of the C_xS phase [9-11,36].

Fig. 2. X-ray diffraction patterns (a: R = 4, b: R = 3, c: R = 2, d: R = 1) [8]

Fig. 3. Results of SEM and line scanning (a: 10 wt% FetO, b: 15 wt% FetO) [36]

Son [36] has reported the effect of elemental compositions on CaO-Fe_tO-SiO₂-5 wt% P₂O₅ slag (CaO/SiO₂ = 1.5). Fig. 3a shows that CS and C₂S are generated at Fe_tO = 10 wt%. However, according to Fig. 3b, C₃P and nC_2 S-C₃P are formed when the Fe_tO content is high (Fe_tO = 15-20 wt%).

Compared with Fe_tO , the initial P_2O_5 content in the slag changes the form of the P-rich phase [7,9-11]. Li [7] has examined the behavior of phosphorus enrichment in CaO-FeO- Fe_2O_3 -SiO₂-P₂O₅ slag and has found that the initial P₂O₅ content promotes the generation of nC₂S-C₃P. Meanwhile, C₃P is formed

Fig. 4. Effect of P₂O₅ content on precipitated phase [9]

when more than 18 wt% P_2O_5 is added [9-11]. The results in Fig. 4 show that $CaO_{15}(P_2O_5)_2(SiO_2)_6$ is generated with the addition of less than 18 wt% P_2O_5 , and C_3P is formed when the P_2O_5 content is up to 18 wt%. C_3P has lower Gibbs free energy than C_2S ; therefore, it is more stable in the temperature range 400-1800°C. Further, compared to SiO₂, P_2O_5 can more easily combine with CaO. Hence, CaO preferentially combines with P_2O_5 and C_3P is formed [9].

In summary, MgO and MnO have little effect on the P-rich phase. Appropriate P_2O_5 and Fe_tO contents promote the precipitation of the P-rich phase. nC_2S-C_3P and C_3P are formed with the addition of more than 15 wt% Fe_tO and 18 wt% P_2O_5 , respectively.

2.2.3. Addition of CaF₂ and Na₂O

Many studies have shown that adding CaF_2 and Na_2O changes the primary phase and phosphorus form, respectively [40,41]. Fig. 5 shows that $6C_2S-C_3P$ and C_2S-C_3P are generated in fluorine-free modified slag. A new phase, $Ca_5(PO_4)_3F$, is generated on the addition of 6 wt% CaF_2 . Therefore, the nC_2S-C_3P and $Ca_5(PO_4)_3F$ phases are mainly considered to be P-rich phases [40]. Fig. 6 shows that Na_2O -free modified slag consists of $6C_2S-C_3P$, C_2S-C_3P , C_2S , and RO phases. However, $Na_2Ca_4(PO_4)_2SiO_4$ is formed in Na_2O -bearing slag. Meanwhile, Na_3PO_4 is generated in slag containing 6 wt% Na_2O [41].

Fig. 5. CaF₂-modified slag [40]

2000 6wt%Na2O 1 Ca15(PO4)2(SiO4)6 1500 2 Cag(PO4)2SiO4 3 Ca2SiO4 1000 4 Fe2O3 500 ntensity(Counts) 0 10 20 30 40 50 60 70 80 90 3000 -0wt%Na2O 5 FeO 6 NazPO4 2400 7 Na2Ca4(PO4)2SiO4 1800 1200 600 0 10 20 30 40 50 60 70 80 90 20(°)

Fig. 6. Na₂O-modified slag [41]

2.2.4. Addition of Al₂O₃ and TiO₂

Most studies have revealed that Al_2O_3 and TiO_2 modification are beneficial to increase the phosphorus content in the P-rich phase [42-45]. Jiang [43] has examined the effect of Al_2O_3 on the phosphorus form existing in CaO-SiO₂-10 wt% FeO-6 wt% MgO-4 wt% MnO-10 wt% P_2O_5 -Al₂O₃ slag. According to Fig. 7b, $Ca_2Al_2SiO_7$ is generated in Al₂O₃-bearing slag, along with the matrix, RO, and P-rich phases. Further, C_3P is formed on adding 11 wt% Al₂O₃.

Lin [45] has reported the effect of TiO_2 modification on phosphorus enrichment in industrial slag by adding 10 wt%

Fig. 7. X-ray diffraction patterns of Al₂O₃-modified slag [43]

Fig. 8. X-ray diffraction patterns of TiO₂-modified slag [45]

P₂O₅. As shown in Fig. 8a, TiO₂-free modified slag consists of the matrix, RO, and CaO₁₅(P₂O₅)₂(SiO₂)₆ phases. However, new phases (CaTiO₃, CaSiTiO₄) are generated after adding 10 wt% TiO₂ (Fig. 8b). [TiO₆], an important part of MgFe₂O₄-Mg₂TiO₄ and CaTiO₃, is formed after adding TiO₂. Furthermore, [TiO₄] and [SiO₄] can be copolymerized to form CaSiTiO₄, and C₂S in *n*C₂S-C₃P is robbed CaSiTiO₄ to generate *y*C₂S-C₃P (*y* < *n*) [4]. Therefore, new phases are generated on adding Al₂O₃ and TiO₂.

2.2.5. Temperature and cooling conditions

Su [33] has reported the distribution of phase structure in CaO-SiO₂-Fe_tO-P₂O₅ slag under 1350°C and 1400°C. After holding 600s, the slag consists of C₂S-C₃P phase and matrix phase. However, Fig. 9 shows that C₂S-C₃P phase is blocked under 1350°C. Therefore, the lower temperature promotes the enrichment of P₂O₅.

In addition, the cooling conditions have effect on phase structure. Li [18] has reported the P-rich phase in steel slag under water quench process and hot splash process. The P-rich phase under water quench process is nC_2S-C_3P , while it is C_3P under hot splash process.Wu [23] has reported the distribution in SiO₂ modified slag. The results show that P is gathered to C_2S phase when the cooling rates are $1^{\circ}C \cdot \min^{-1}$ and $3^{\circ}C \cdot \min^{-1}$. The C₂S phase is arborization and punctate when the cooling rate is $5^{\circ}C \cdot \min^{-1}$.

3. Phosphorus enrichment in dephosphorization slag

3.1 Mechanism of phosphorus enrichment

The mechanism of phosphorus enrichment can be concluded from the following process. First, solid C_2S particles dissolve in the slag. Then nC_2S-C_3P is generated in the multi-phase area where solid and liquid phases coexist. Finally, the solid-solution layer is extended and completely changes into the nC_2S-C_3P layer with the shrinking of the solid C₂S particles [21-27].

According to the slag ionic structure theory [22], slag consists of oxides, compounds, and charged protons (ions). As the SiO₂ content in basic dephosphorization slag is higher than the P₂O₅ and Al₂O₃ contents, C₂S and C₃S based on SiO₄^{4–} are generated during solidification, and SiO₄^{4–} is more easily replaced by P₂O₅ and Al₂O₃. Then, phosphorus is precipitated as PO₄^{3–} and coexists with SiO₄^{4–}. Therefore, it is difficult to generate C₃P in dephosphorization slag. The formation reaction of *n*C₂S-C₃P can be expressed as Eq. (1).

$$2n\operatorname{CaO} + n\operatorname{SiO}_{2} + \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2}$$
$$= n\operatorname{Ca}_{2}\operatorname{SiO}_{4} \cdot \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2}$$
(1)

It is well known that C_3S and C_2S react with C_3P to form a solid solution. Hence, the phosphorus in the slag is distributed in multiple phases [23]. Stable C_3S changes to spherical C_2S at 1300°C. Therefore, the P-rich phase mainly occurs in the $nC_2S \cdot C_3P$ phase as C_3S cannot react with C_3P at any ratio.

Most researchers have reported the behavior of mass transfer between single C₂S particles and slag [24-27]. C₂S particles are regarded as a multi-layered filter paper. Here the phosphorus in the slag is filtered and the phosphorus content gradually decreases in the direction of the C₂S particles. Therefore, nC₂S-C₃P is generated until the C₂S particles disappear. Fig. 10 shows the reaction between C₂S particles and CaO-SiO₂-Fe_tO-P₂O₅ slag at 1500°C for 300 s. It reveals that a solid-solution layer is formed between the slag and the C₂S particles after 1 s (Fig. 10a), and after 60 s (Fig. 10b-c), the number of C₂S particles decrease with increasing area of this solid-solution layer [27]. Ono [24] has reported that ferrous and iron oxides increase the activity coefficient of C₃P in CaO-SiO₂-FeO/Fe₂O₃ slag. Most of the P₂O₅ in the slag reacts with C₂S particles to generate a solid solution. Moreover, the products float to the top of the slag. Ito [25] has measured the distribution ratio between CaO-SiO₂-FeO/ Fe₂O₃ slag and C₂S particles. The results reveal that 80% P₂O₅ is transferred from the slag to the surface of the C₂S particles to form nC_2S-C_3P . Wang [26] has analyzed the enrichment be-

Fig. 9. The phase structure at different temperatures:(a)1350°C and (b) 1400°C (1: matrix phase, 2: P-rich phase) [33]

Fig. 10. SEM results at different times: (a)1s, (b)60s, and (c)300s [27]

havior of CaO-SiO₂-Fe_tO-P₂O₅ slag at 1400°C and has found that C₂S particles provide space for phosphorus enrichment. Therefore, phosphorus diffuses from the slag to the surface of the C₂S particles.

Furthermore, a macro-process for phosphorus enrichment has been proposed. Yang et. all [28-30] have reported the reaction between C_2S particles and CaO-SiO₂-FeO_x-P₂O₅ slag at 1400°C for 60 s. The mechanism is illustrated in Fig. 11.

- 1) C_2S particles dissolve into the slag and the slag penetrates into the solid sample (Fig. 11a).
- The edge of the solid C₂S particles changes into a multiphase area where solid and liquid phases coexist (Fig. 11b).
- 3) In this multi-phase area, CaO and P_2O_5 react with the C_2S particles to form nC_2S-C_3P (Fig. 11c).
- 4) The multi-phase area shifts toward the side of the C_2S particles to form a new P-rich phase (Fig. 11d).
- 5) The previously formed P-rich phase is either retained (Fig. 11e1), partly dissolved (Fig. 11e2), or fully dissolved into the slag (Fig. 11e3). The P-rich phase region is gradually extended.

Suito [31] has examined the behavior of phosphorus diffusion from CaO-Fe_tO-P₂O₅(-SiO₂) slag to CaO particles at 1400°C. The results show that nC_2S-C_3P is generated at the surface of CaO particles within 30 s. After 5 min, CaO-Fe_tO is produced between the nC_2S-C_3P and CaO particles. Inoue [32] has reported the phosphorus distribution between CaO-Fe_tO-P₂O₅ slag and C₂S particles. The results show that all the phosphorus in C₂S particles (20-50 μ m) is converted into nC₂S-C₃P in less than 5 s. Only the rim part of the particles (5 μ m) and the small particles (3-8 μ m) change to *n*C₂S-C₃P within 5 s when the particles are clustered. However, this phenomenon is not observed in CaO-SiO₂-Fe_tO-P₂O₅ slag.

Consequently, the formation of the P-rich phase can be described by the following process. The phosphorus in the slag transfers to the C₂S particles at high temperatures and reacts with C₂S to generate nC_2S -C₃P, and the previously formed P-rich phase is replaced by new products.

3.2. Factors influencing selective enrichment

3.2.1. Concept of Selective Enrichment

Temperature and the size of the C_2S particles affect phosphorus enrichment [26,33]. Because a higher temperature improves the kinetics of slag formation, the phosphorus content in the P-rich phase at 1400°C is higher than that at 1350°C [26,33]. The size of the P-rich phase increases with increasing enrichment time [33], and C_2S particles, of size less than 50 µm, are completely converted to form a P-rich phase [26].

Fig. 11. Formation mechanism of *n*C₂S-C₃P [28]

However, the phosphorus content in the P-rich phase is low and dispersed. Therefore, the selective enrichment of P is important to increase the enrichment, separation, and recovery of the P-rich phase [34,35]. In 1978, Jha [34] proposed the concept of selective precipitation to obtain nickel sulfide and cobalt sulfide. In China, Sui [35] has proposed the technology of selective enrichment and separation. "Selective enrichment" means that suitable thermodynamics and kinetics are achieved by changing the slag compositions and additives. Then, valuable components interspersed in each phase are selectively transferred. Eventually, the valuable components accumulate in the target phase due to chemical gradient. The slag basicity and composition, the initial content of P_2O_5 , and the value of (%FeO)/(%CaO) have effect on the selective enrichment.

3.2.2. Slag Basicity and Composition

Using a suitable slag basicity is a good method to promote selective enrichment. Zhou [11] has examined the behavior of distribution of phosphorus between the P-rich phase and the matrix phase. The results show that phosphate capacities increase with decreasing slag basicity. According to Fig. 12, the P_2O_5 content in the P-rich phase decreases with increasing slag basicity. Lin [8] has reported the influence of SiO₂ modification on the phosphorus enrichment in P-bearing steelmaking slag. The results show that the P_2O_5 contents in the P-rich phase were 19-25 wt%, 31-32 wt%, 32-33 wt%, and 34-37 wt% for *R* values decreasing from 4 to 1, respectively. Son [36] has analyzed CaO-20 wt% FetO-SiO₂-5 wt% P₂O₅ slag and has found that the P_2O_5 content was 37.3 wt% and 22.7 wt% at *R* = 2.0 and *R* = 2.5, respectively. Thus, a higher slag basicity is harmful to phosphorus enrichment.

Many studies have reported the effect of slag compositions (MgO, MnO, P_2O_5 , Fe_tO) on the selective enrichment of the P-rich phase. The addition of P_2O_5 increases the phosphorus content in the P-rich phase, whereas MgO and MnO have little effect [9-11,15,36-39].

Fe_tO is an inevitable component in slag and reduces polymerization and viscosity. Additionally, it contributes to mass transfer and phosphorus enrichment in dephosphorization slag [4]. Son [36] has analyzed the effect of Fe_tO on CaO-Fe_tO-SiO₂-5 wt% P₂O₅ slag. As shown in Fig. 13, the P₂O₅ content in the P-rich phase is 17.6 wt% and 22.7 wt% with the addition of 10 wt% Fe_tO and 20 wt% Fe_tO, respectively. Moreover, the common effect of Fe_tO and CaO on slag is unclear [7,37,38]. Li [7] has analyzed the effect of Fe_tO/CaO content on CaO-FeO-Fe₂O₃-SiO₂-P₂O₅ slag and found that nC_2 S-C₃P decreases with increasing Fe_tO/CaO content.

Zhou [9] has reported the effect of initial P_2O_5 content on phosphorus enrichment in CaO-Fe_tO-SiO₂-P₂O₅ slag. According to Figure 12, when the P_2O_5 content is increased from 6 wt% to 8 wt%, the phosphorus content in the P-rich phase increases from 20.33 wt% to 33.99 wt% and reaches a maximum value (34.91 wt%) when 18 wt% P_2O_5 is added. This suggests that phosphorus content in the P-rich phase increases with increasing initial P_2O_5 content.

MgFe₂O₄ and MnFe₂O₄ generated by MgO, MnO, and Fe₂O₃ enter into the RO phase, as shown in Eq. (2) [11,15,39]. Lin [15] has analyzed the effect of MgO and MnO on phosphorus enrichment in CaO-SiO₂-30wt%Fe₂O₃-MgO-MnO-10wt%P₂O₅ slag. According to Figure 12, when the MgO content increases from 5 wt% to 10 wt%, the P₂O₅ content in the P-rich phase

changes from 20.76 wt% to 19.66 wt%. Similarly, when the MnO content increases from 5 wt% to 10 wt%, the P_2O_5 changes from 22.62 wt% to 19.66 wt%. Thus, P_2O_5 content in the P-rich phase does not change significantly.

$$MgO + Fe_2O_3 = MgFe_2O_4$$

MnO + Fe_2O_3 = MnFe_2O_4 (2)

In summary, MgO and MnO have little effect on the selective enrichment of the P-rich phase. In contrast, the P_2O_5 content in the P-rich phase reaches 20 wt% and 35 wt% on the addition of 15 wt% Fe₁O and 18 wt% P_2O_5 , respectively.

Fig. 12. Effect of slag basicity on P2O5 content

Fig. 13. Effect of slag composition on P2O5 content

3.2.3. Addition of CaF₂ and Na₂O

 CaF_2 and Na_2O can significantly reduce the melting point of slag and promote phosphorus enrichment [4,11,40,41]. Wang [4] has analyzed the effect of CaF_2 on crystallization in CaO- SiO₂-Fe_tO-MgO-P₂O₅-CaF₂ slag. The results show that the P₂O₅ content in Ca₅(PO₄)₃F reduces to 28.35 wt% with the addition of 3 wt% CaF₂. According to Fig. 14, on adding 3 wt% CaF₂ into the slag, the P₂O₅ content in the P-rich phase is 32.5 wt%, and on adding 6 wt% CaF₂ into the slag, the P₂O₅ content in the P-rich phase increases to 35.65 wt% [11]. Meanwhile, Lin [40] has reported the phosphorus enrichment behavior in CaO-SiO₂-Fe_tO-MgO-P₂O₅-CaF₂ slag. The results reveal that the P₂O₅ content in the P-rich phase is 20.75 wt% in fluorine-free modified slag. On increasing the CaF₂ content from 3 wt% to 6 wt%, the P₂O₅ content in the P-rich phase increases from 34.0 wt% to 37.75 wt%. Furthermore, it is necessary to control the CaF₂ content to avoid lining erosion and environmental pollution.

Fig. 14. Effect of addition of CaF_2 and Na_2O on selective enrichment of phosphorus

The form of phosphorus in the P-rich phase changes on the addition of Na₂O according to Eqs. (3-5) [41].

$$12\text{CaO} + 6\text{SiO}_2 + \text{Ca}_3(\text{PO}_4)_2$$

= 6Ca₂SiO₄ · Ca₃(PO₄)₂ (3)

$$Na_{2}O + 6Ca_{2}SiO_{4} \cdot Ca_{3}(PO_{4})_{2}$$

= Na_{2}Ca_{4}(PO_{4})_{2}SiO_{4} + 5Ca_{2}SiO_{4} + CaO (4)

$$3Na_2O + Na_2Ca_4(PO_4)_2SiO_4$$

= 2Na_3PO_4 + Ca_2SiO_4 + 2CaO (5)

As shown in Eq. (3), $6C_2S-C_3P$ is precipitated in the previous stage of cooling. Then $Na_2Ca_4(PO_4)_2SiO_4$ is generated by the reaction of $6C_2S-C_3P$ and Na_2O at 1623 K (Eq. (4)). Moreover, Na_3PO_4 is formed in the presence of excess Na_2O content (Eq. (5)). Lin [41] has reported the influence of Na_2O on phosphorus enrichment in CaO-SiO₂-Fe_tO-MgO-P₂O₅ slag. As shown in Fig. 14, the P₂O₅ content in the P-rich phase is 21 wt% in Na₂O-free modified slag. When the Na₂O content is increased from 3 wt% to 6 wt%, the P₂O₅ content in the P-rich phase increases from 24 wt% to 32 wt%. According to the slag ionic structure theory, the combination of Na⁺ and phosphorus ions is stronger than that of Ca²⁺ and phosphorus ions. Moreover, Ca²⁺ in 6C₂S-C₃P or Na₂Ca₄(PO₄)₂SiO₄ is replaced by Na⁺. Further, Na₃PO₄ is generated when sufficient Na₂O is added.

Thus, the P_2O_5 content in the P-rich phase increases to 30 wt% on adding 3 wt% CaF₂ or 6 wt% Na₂O. Furthermore, considering the limitations of CaF₂, it can be replaced by Na₂O to promote the selective enrichment of phosphorus.

3.2.4. Addition of Al₂O₃ and TiO₂

Previous studies have shown that Al_2O_3 and TiO_2 modification are beneficial to phosphorus enrichment [42-45]. The mechanism of Al_2O_3 modification can be illustrated as shown in Eqs. (6-7) [42-44].

$$mCa_2SiO_4 \cdot Ca_3(PO_4)_2 + nAl_2O_3$$

= $nCa_2Al_2SiO_7 + yCa_2SiO_4 \cdot Ca_3(PO_4)_2$ (6)

$$y\operatorname{Ca}_{2}\operatorname{SiO}_{4} \cdot \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + x\operatorname{Al}_{2}\operatorname{O}_{3}$$
$$= x\operatorname{Ca}_{2}\operatorname{Al}_{2}\operatorname{SiO}_{7} + (y - x)\operatorname{Ca}_{2}\operatorname{SiO}_{4} \cdot \operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} \quad (7)$$

First, mC_2S-C_3P is precipitated at 1623 K and gradually decreases with the generation of yC_2S-C_3P (y < n) (Eq. (6)). Then $(y - x)C_2S-C_3P$ is produced on adding Al₂O₃ (Eq. (7)). Finally, C₂S in yC₂S-C₃P disappears when the Al₂O₃ content is sufficient to make y = x, and C₃P is precipitated from the slag.

As shown in Fig. 15, Diao [44] has revealed that the P_2O_5 content in the P-rich phase reached 5.1 wt% on adding 8 wt% Al_2O_3 into CaO-SiO₂-10wt%FeO-MgO-MnO- P_2O_5 slag (R = 2), whereas the content increases to 9.15 wt% on adding 11 wt% Al_2O_3 . Wang [4] has also reported that the P_2O_5 content in the P-rich phase reaches 28.71 wt% with the addition of 15.17 wt% Al_2O_3 in CaO-SiO₂-FetO-MgO- P_2O_5 slag.

Fig. 15. Effect of addition of Al_2O_3 and TiO_2 on selective enrichment of phosphorus

Similarly, the mechanism of TiO_2 modification is shown in Eqs. (8-9) [45]. CaSiTiO₅ and CaTiO₃ are generated on adding TiO₂. Lin [45] has found that the P₂O₅ content in the P-rich phase is only 13-15 wt% and increases to 24-26 wt% on adding 10 wt% TiO₂.

$$mCa_{2}SiO_{4} \cdot Ca_{3}(PO_{4})_{2} + 2nTiO_{2}$$

= $nCa_{2}SiTiO_{5} + nCaTiO_{3}$
+ $yCa_{2}SiO_{4} \cdot Ca_{3}(PO_{4})_{2}$ (8)

$$yCa_{2}SiO_{4} \cdot Ca_{3}(PO_{4})_{2} + 2xTiO_{2}$$

= $xCa_{2}SiTiO_{5} + xCaTiO_{3}$
+ $(y-x)Ca_{2}SiO_{4} \cdot Ca_{3}(PO_{4})_{2}$ (9)

The effect of Al_2O_3 and TiO_2 on the selective enrichment of the P-rich phase is significant. The P_2O_5 content in the P-rich phase reaches 20 wt% on adding 15 wt% Al_2O_3 or 10 wt% TiO_2 to the slag.

4. Selective growth and precipitation in dephosphorization slag

4.1. Effect of temperature on selective growth and precipitation

According to the mechanism of selective enrichment and separation by Sui, the enrichment phase will grow up by control-

ling temperature, slag basicity, slag composition, and additives. Finally, the efficiency of separating valuable components is improved. The process is called as selective growth.

Heat treatment is the main factor affecting selective growth and precipitation. Most reports agree that the P-rich phase is thicker at lower cooling rates [4,5,7,23,47].

Wang [4] has analyzed the crystallization of the P-rich phase in CaO-SiO₂-Fe_tO-MgO-P₂O₅-Al₂O₃/TiO₂ slag by differential scanning calorimetry. The results reveal that the crystallization temperature of the P-rich phase increases with decreasing cooling rate. The diffusion of the P-rich phase is hampered at higher sub-cooling degrees. Li [7] has reported the effect of temperature on selective growth in CaO-FeO-Fe₂O₃-SiO₂-P₂O₅ slag. The results reveal that the size of the P-rich phase and its crystal fraction are 40 µm and 24% at a cooling rate of 3°C/min, respectively, and the latter reaches its maximum value within 1 h. Wu [23] has examined the average size of P-rich phases in industrial SiO₂-modified slag. On decreasing the cooling rate from 5° C·min⁻¹ to 3° C·min⁻¹ and 1° C·min⁻¹, the average size increases from 8 µm to 56 µm and 87 µm and the P₂O₅ content in the P-rich phase increases from 3.65 wt% to 7.5 wt% and 7.74 wt%, respectively. Yang [47] has analyzed the growth of the P-rich phase in CaO-SiO₂-Fe₂O₃-MgO-MnO-P₂O₅-Al₂O₃-TiO₂ slag at 1520°C. The statistical results show that the relationship between holding time (t) and the size of the C₂S layer (D) can be described by $D = kt^m$. Where, k and m is constant. Thus, the size of the P-rich phase exceeds 40 µm when the cooling rate is less than $3^{\circ}C \cdot min^{-1}$.

Fig. 16. Size of different phases (1: P-rich phase, 2: RO phase, 3: matrix phase) [8]

4.2. Effect of slag basicity and composition on selective growth and precipitation

Appropriate slag basicity and composition promote the selective growth and precipitation of the P-rich phase [8,9,15]. As shown in Fig. 16, the size of the P-rich phase is 10-30 μ m, 20-100 μ m, and 30-150 μ m at R = 4, 3, and 2, respectively [8]. Further, the P-rich phase at R = 1 is rod-shaped and smaller than that at R = 2.

As MgO and MnO enter the RO phase, they have little effect on the selective growth and precipitation of the P-rich phase. Moreover, few studies have focused on the influence of P_2O_5 and Fe_tO contents on the selective growth and precipitation of phosphorus [9,15]. Zhou [9] has measured the size of the P-rich phase in CaO-Fe_tO-SiO₂-P₂O₅ slag. On increasing the P_2O_5 content from 6 wt% to 10 wt% and 18 wt%, the size of the P-rich phase increases from 20-60 µm to 30-90 µm and 50-80 µm, respectively.

4.3. Effect of additives on selective growth and precipitation

Recently, some studies focusing on the effect of additives $(CaF_2, Na_2O, Al_2O_3, and TiO_2)$ on the selective growth and precipitation of the P-rich phase have found CaF_2 and Al_2O_3

have a positive effect [40,42]. According to Fig. 17a-b, the size of the P-rich phase is 20-40 μ m on the addition of 3 wt% CaF₂ and increases to 100 μ m on adding 6 wt% CaF₂ [40].

Jiang [42] has reported the effect of Al_2O_3 on the selective growth of the P-rich phase in CaO-SiO₂-Fe₂O₃-MgO-MnO-P₂O₅-Al₂O₃ slag. As shown in Fig. 18, the P-rich phase is significantly accumulated on the addition of Al_2O_3 , and the size of the P-rich phase increases from 20 µm (without Al_2O_3) to 30-40 µm on the addition of 8 wt% Al_2O_3 .

5. Separation of phosphorus from dephosphorization slag

5.1. Magnetic separation of dephosphorization slag

5.1.1. Effect of Slag Basicity and Composition on Magnetic Separation

A common method for separating dephosphorization slag is magnetic separation. The phosphorus recovery rate can be promoted under a suitable magnetic field intensity (<0.5 T) and slag size ($<50 \mu$ m) [5,7,8,12,25,40,41,54-58]. Several parameters have been suggested to characterize magnetic separation [12].

$$L_{\rm P} = \frac{\omega_{\rm (P_2O_5)_1} \cdot M_1}{\omega_{\rm (P_2O_5)_2} \cdot M_2}$$
(10)

Fig. 17. Effect of CaF₂ on selective growth (1: P-rich phase, 2: RO phase, 3: matrix phase) [40]

Fig. 18. Effect of Al₂O₃ on selective growth (1: P-rich phase, 2: RO phase, 3: matrix phase) [42]

$$H_{\mathrm{P},i} = \frac{\omega_{(\mathrm{P}_{2}\mathrm{O}_{5})_{1}} \cdot M_{1}}{\omega_{(\mathrm{P}_{2}\mathrm{O}_{5})_{1}} \cdot M_{1} + \omega_{(\mathrm{P}_{2}\mathrm{O}_{5})_{2}} \cdot M_{2}} (i = 1 \text{ or } 2) \qquad (11)$$

$$H_{\text{Fe},i} = \frac{\omega_{(\text{TFe})_1} \cdot M_1}{\omega_{(\text{TFe})_1} \cdot M_1 + \omega_{(\text{TFe})_2} \cdot M_1} \quad (i = 1 \text{ or } 2)$$
(12)

Where M_1 and M_2 are the mass of the nonmagnetic and magnetic substances (g), respectively; $\omega_{(P_2O_5)_1}$ and $\omega_{(P_2O_5)_2}$ are the mass fractions of P_2O_5 in the nonmagnetic and magnetic substances (%), respectively; L_P is the phosphorus partition ratio between the nonmagnetic and magnetic substances; $\omega_{(TFe)_1}$ and $\omega_{(TFe)_2}$ are the mass fractions of the nonmagnetic and magnetic substances (%), respectively; H_P is the P_2O_5 content (wt %) in the slag entering the nonmagnetic and magnetic substances; and H_{Fe} is the TFe content (wt %) in the slag entering the nonmagnetic and magnetic substances. The phosphorus recovery rate and iron recovery rate are defined by the P_2O_5 content entering the nonmagnetic substances and Fe content entering the magnetic substances, respectively.

Suitable slag basicity and compositions promote magnetic separation. Lin [12,15] has examined the effect of slag basicity on magnetic separation in CaO-SiO₂-Fe_tO-MgO-P₂O₅-MnO Al₂O₃/TiO₂/CaF₂ slag. When the *R* is decreased from 4 to 2, the P₂O₅ content in the slag entering the nonmagnetic substance increases from 64.59 wt% to 74.68 wt% and the *L*_P changes from 2.71 to 5.48. Moreover, as shown in Fig. 19, the phosphorus recovery rate increases from 73.5% to 84.57% when the *R* decreases from 4 to 2. Diao [58] has reported magnetic separation in CaO-10wt%SiO₂-Fe_tO-MgO-MnO-10wt%P₂O₅-Al₂O₃/TiO₂ slag (*R* = 2.5). According to Figure 18, the phosphorus recovery rate in the nonmagnetic substances is 74%.

MgO and MnO improve slag metallization and the magnetism of the iron-rich phase, resulting in the incomplete separation of phosphorus and iron [15,58]. As shown in Figure 18, on adding 10 wt% MgO and 10 wt% MnO to the slag, the phosphorus recovery rate in the nonmagnetic substances decreases from 65.44% to 40.43% and 35.8%. and L_P decreases from 2.71 to

Fig. 19. Effect of slag basicity and compositions on magnetic separation

0.63 and 0.56, respectively [15.] Diao [58] has added 10 wt% MnO into CaO-SiO₂-Fe_tO-MgO-MnO-10wt%P₂O₅ slag and has found that the phosphorus recovery rate decreases from 46% to 40%. Thus, the phosphorus recovery rate can exceed 70% when the slag basicity is 1.5-2.5. Further, MgO and MnO decrease the phosphorus recovery rate.

5.1.2. Effect of Additives on Magnetic Separation

Many studies [40-41,58] have revealed that CaF_2 and Na_2O improve slag metallization and the magnetism of the iron-rich phase. Moreover, they can result in the incomplete separation of phosphorus and iron. However, Al_2O_3 and TiO_2 are beneficial to magnetic separation.

Lin [40-41] has analyzed the phosphorus recovery rate in fluorine-free modified slag. As shown in Fig. 20, the phosphorus recovery rate is 64.6% in fluorine-free modified slag, while it decreases to 48.8% on adding 6 wt% CaF₂. In addition, the phosphorus recovery rate is 64.55% on adding less than 6 wt% Na₂O, but it is only 36.53% on adding more than 6 wt% Na₂O. Therefore, the Na₂O content should be controlled to be within 6 wt%.

According to Fig. 21, the phosphorus recovery rate is 45.51 wt% in Al_2O_3 -free slag and increases to 68.47 wt% and 82.16 wt% on increasing the Al_2O_3 content from 10 wt% to 15 wt%. Furthermore, the phosphorus recovery rate increases to 74.46 wt% on adding 10 wt% TiO₂. Additionally, the L_P is 4.61 and 2.91 on adding 10 wt% Al_2O_3 and 10 wt% TiO₂, respectively [12]. Simultaneously, Diao [58] has reported the effect of Al_2O_3 and TiO₂ on magnetic separation in CaO-SiO₂-Fe_tO-MgO-MnO-10 wt% P₂O₅ slag. The results reveal that the phosphorus recovery rate reached 87% and 70% on the addition of 10 wt% Al_2O_3 and 10 wt% TiO₂, respectively.

Fig. 20. Effect of CaF₂ and Na₂O contents on magnetic separation

Fig. 21. Effect of Al₂O₃ and TiO₂ contents on magnetic separation

In summary, the phosphorus recovery rate increases to 60% either in fluorine-free modified slag or in slag containing 6 wt% Na₂O. Moreover, it reaches 70% on adding more than 10 wt% Al₂O₃ and 10 wt% TiO₂.

5.2. Separation of phosphorus from dephosphorization slag by supergravity separation

Previous studies have reported that calcium silicate in slag floats to the top due to the density difference between calcium silicate and the slag. Namely, CaO, SiO₂, and P₂O₅ accumulate at the top of the slag. Meanwhile, FeO, Fe₂O₃, and MnO accumulate at the bottom of the slag [48,49]. However, the initial temperature must be up to 1580°C and the average cooling rate should be less than $2^{\circ}C \cdot min^{-1}$. Additionally, FeO and MnO contents must be more than 30% [48]. Supergravity separation has been found to be effective for phosphorus separation [50-53].

Li [50-52] has reported the separation of Fe-bearing and P-bearing phases in industrial slag. As shown in Fig. 22, the sample obtained by centrifugal enrichment (G = 800, T =1663 K, t = 40 min) is compared with a parallel sample (G =1, T = 1663 K, t = 40 min). According to Fig. 22a, a uniform structure is observed under normal gravity. However, an obvious stratified boundary appears after centrifugal enrichment (as depicted in the white line in Figure 21b). The bottom of the sample is compact and tight, while the top, where the Prich phase is formed, is loose and porous [50]. Therefore , the enrichment efficiency is proportional to the centrifugation time and gravity coefficient.

Fig. 22. Cross-section of the sample (a: parallel sample, b: sample after centrifugal enrichment) [50]

Li [50] has reported the separation of the Fe-bearing phase and P-rich phase in industrial slag (G = 800, T = 1663 K and *t* = 40 min). The slag is fully mixed and 2 wt% CaF₂ is added. As shown in Fig. 23, the maximum mass fractions of P₂O₅ and Fe_tO in the P-rich and Fe-bearing phases are 4.12 wt% and 35.17 wt% and their recovery ratios are 77.56% and 60.18%, respectively. However, when G = 600, T = 1663 K, and t = 15 min, the mass fraction of P₂O₅ in the P-rich phase is 3.56 wt% and that of Fe_tO in the Fe-bearing phase is 38.67 wt% and the recovery ratios of P₂O₅ and Fe_tO are 82.2% and 68.5%, respectively [51]. Additionally, Li [52] has revealed the separation of P₂O₅ and Fe_tO in CaO-SiO₂-FeO-MgO-P₂O₅ slag (G = 700, T = 1623 K, and t = 20 min). The recovery ratios of P₂O₅ and Fe_tO are 76.67% and 85.02%, respectively. Gao [53] has also analyzed the separation of the Fe-bearing and P-bearing phases in high-phosphorous oolitic iron ore at 1200°C and G = 1200. The recovery ratios of P₂O₅ and Fe_tO are 99.19% and 95.83%, respectively.

Fig. 23. Recovery ratio of P_2O_5 and Fe_tO

Consequently, the enrichment efficiency can be promoted by supergravity. Thus, the supergravity method is effective for the separation of the Fe-bearing and P-rich phases.

6. Summary and future applications

All the above studies have investigated the formation and evolution of phases in dephosphorization slag. Further, instructive data concerning the effect of various factors (slag basicity, slag composition, and additives) on the selective enrichment, growth, and separation of phosphorus have been obtained. However, most these studies have focused on laboratory investigations; therefore, the application in industrial production is still unclear.

Recently, the dephosphorization in hot metal pretreatment and previous stage of the steelmaking still utilize CaO-FeO-SiO₂ slag. The removal of phosphorus is thermodynamically favorable before decarburization because of the relatively low temperature. However, an increase in the dephosphorization efficiency is greatly limited due to the higher melting point and poor liquidity. Actually, Al₂O₃, Na₂O, and TiO₂ decrease the melting point and improve the liquidity. On the other hand, they replace parts of SiO₂ and combine with CaO to generate new phases (decreasing the value of "n" in nC_2S-C_3P). Therefore, the process not only effectively increases the P2O5 content in the P-rich phase but also promotes the magnetic separation of this phase. Further, Na₂O strengthens the magnetism of the Febearing phase and has little effect on the magnetic separation. Li [61] has revealed that according to thermodynamics, $Al_2O_3/$ TiO₂ slightly decreases the distribution ratio between the slag and carbon-saturated iron. However, according to semi-industrial test results, Al₂O₃/TiO₂ significantly improves the dephosphorization efficiency of the previous stage in the steelmaking process (before decarburization; [C] = 2.5 - 3.0%). The results show that the dephosphorization efficiency is up to 85% and the [P] content is less than 0.02% [62,63], which is beneficial to the smelting of medium and high-phosphorus-content hot metals. Additionally, it broadens the range of available iron ore resources and increases the purity of steel.

Therefore, CaO-FeO-SiO₂-Al₂O₃/TiO₂/Na₂O dephosphorization slag is significant for improving production efficiency and resource utilization. Previous studies have analyzed the behaviors of phosphorus enrichment and separation under the conditions of thermodynamics/dynamics. To effectively increase the practical application of dephosphorization slag, further research concerning phosphate fertilizers are necessary. Although Al₂O₃/TiO₂/Na₂O enriches the P-rich phase, how the proportion of the P-rich phase in dephosphorization slag changes with different compositions directly affects the total P₂O₅ solubility in the slag. Moreover, few investigations have focused on the most direct data related to the quantity of dephosphorization slag. The P₂O₅ content in the slag increases with increasing dephosphorization efficiency. However, the variation in slag viscosity and slag structure caused by P2O5 content affects the liquidity and separation of the slag. Therefore, further studies on these aspects should be conducted.

Acknowledgement

The authors would like to thank the National Natural Science Foundation of China (No. 51474021) for financial support.

REFERENCES

- [1] S. Jung, Y. Do, J. Choi, Steel Res. Int. 77 (2006).
- [2] H. Ono, A. Inagaki, T. Masui, N. Hiroshi, N. Shoji, ISIJ Int. 21 (2), 135-144 (1980).
- [3] H.J. Li, ISIJ Int. **35** (9), 1079-1088(1995).
- [4] Z.J. Wang. Investigation on Physical and Chemical Properties of P-bearing Steelmaking Slags during the Selective Enrichment Process of Phosphorus. PhD thesis, University of Science & Technology Beijing, June.
- [5] Z.T. Sui, B.C. Chen, in: Proceedings of the National Powder Engineering Conference, China 1998.
- [6] Z.T. Sui, T.P. Lou, N.X. Fu, CN1253185, China 2000.

- [7] J.Y.Li. Selective enrichment and phase separation of phosphate in steelmaking slags. PhD thesis, University of Science & Technology Beijing, December.
- [8] L. Lin, Y.P. Bao, M. Wang, Ironmaking and Steelmaking 40 (7), 521-527 (2013).
- [9] H.M. Zhou, Y.P. Bao, L. Lin, China Metall. 23 (1), 45-49 (2013).
- [10] S. Ken-Ichi, K. Shin-Ya, H. Shibata, Tetsu-to-Hagane 49 (49), 505-511(2009).
- [11] H.M. Zhou, Y.P. Bao, L. Lin, Steel Res. Int. 84 (9), 863-869 (2013).
- [12] L. Lin, Y.P. Bao, M. Wang, Ironmaking and Steelmaking 21 (5), 496-502 (2014).
- [13] L.C. He, Y.M. Wang, Fertilizer industry knowledge, 1975, Fuel Chemical Industry Press, Beijing(in Chinese).
- [14] H.G. Jin, L.B. Yu, China Res. Comp. Util. 3, (1999).
- [15] L. Lin, Y.P. Bao, M. Wang, High Temp. Mater. Proc. 35 (4), 425-432 (2016).
- [16] L. Lin, Y.P. Bao, M. Wang, ISIJ Int. 54 (12), 2746-2753 (2014).
- [17] J. Diao, L. Jiang, Y. Wang, Phosphorus Sulfur **190** (3), 387-395 (2014).
- [18] L.S. Li, X.F. Yu, X R. Wu, P. Soc. Photo-Opt. Ins. 10 (1), 78-81 (2006).
- [19] L.S. Li, X.F. Yu, China Metal. 17 (1), 42-45 (2007).
- [20] S. Fukagai, T. Hamano, F. Tsukihashi, ISIJ Int. 47 (1), 187-189 (2007).
- [21] X. Yang, H. Matsuura, F. Tsukihashi, Metal. Mater. Trans. B 51 (9), 1298-1307 (2010).
- [22] H.J. Guo, Metallurgical Physical Chemistry Tutorial, 2006, Metallurgical Industry Press, Beijing(in Chinese).
- [23] X.G. Wu, J.N. An, J. Anhui Univ. Technology 27 (3), 233-237(2010).
- [24] H. Ono, Tetsu-to-Hagane 3, (1980).
- [25] K. Ito, M. Yanagisawa, N. Sano, Tetsu-to-Hagane 68 (2), 342-344 (1982).
- [26] N. Wang, Z.G. Liang, M. Chen, Northeast Univ. J. 32 (6), 814-817 (2011).
- [27] X.F. Dou, M.M. Zhu, T.C. Lin, Chongqing Univ. J. 38 (5), 78-82 (2015).
- [28] X. Yang, H. Matsuura, F. Tsukihashi, ISIJ Int. 49 (9), 1298-1307 (2009).
- [29] X. Yang, H. Matsuura, F. Tsukihashi, ISIJ Int. 50 (5), 702-711 (2010).
- [30] X. Yang, H. Matsuura, F. Tsukihashi, Tetsu-to-Hagane 95 (95), 268-274 (2009).
- [31] H. Suito, R. Inoue, T. Iron Steel I. Jpn. 46 (2), 180-187 (2006).
- [32] R. Inoue, H. Suito, ISIJ Int. 46 (2), 174-179 (2006).
- [33] C. Su, L.Z. Chang, in: Proceedings of the National Metallurgical Energy Environmental Protection Production Technology Association, China 2014.
- [34] M.C. Jha, G.R. Wicker, US4110400, US 1978.

- [35] P. Zhang, Z. Sui, Metall. Metal. Mater. Trans. B 26 (2), 345-351 (1995).
- [36] P.K. Son, Y. Kashiwaya, Tetsu-to-Hagane 48 (9), 1165-1174 (2008).
- [37] X.M. Yang, J.P. Duan, C.B. Shi, Metal. Mater. Trans. B 42 (4), 738-770 (2011).
- [38] X.M. Yang, C.B. Shi, Z. Meng, Metal. Mater. Trans. B 42 (1), 951-977 (2011).
- [39] Y.Liu, Q.F. Shu, Nonferrous Metal. Sci. Eng. 7 (3), 29-34 (2016).
- [40] L. Lin, Y.P. Bao, Q. Yang, Ironmaking and Steelmaking 42 (3), 331-338 (2015).
- [41] L. Lin, Y.P. Bao, W. Jiang, ISIJ Int. 55 (3), 552-558 (2015).
- [42] L. Jiang, J. Diao, X.M. Yan, Proceedings of the National Powder Engineering Conference, China 2014.
- [43] X.L. Pan, J.Y. Li, M. Guo, J. Iron Steel Res. 29 (6), 474-480 (2017).
- [44] L. Jiang, J. Diao, X.M. Yan, ISIJ Int. 55 (3), 564-569 (2015).
- [45] L. Lin, Y.P. Bao, M. Wang, Chinese J. Eng. 8 (1), 1013-1019 (2014).
- [46] Z.M. Wang. The Study on the Separation and Growing up of Perovskite Phase from the Blast Furnace Slag Containing Titanium. PhD thesis, Northeastern University, June.
- [47] G.M. Yang, X.R. Wu, L.S. Li, Can. Metall. Quart. 51 (2), 150-156 (2012).
- [48] H. Ono, A. Inagaki, T. Masui, ISIJ Int. 21 (2), 135-144 (1980).
- [49] H. Ono, A. Inagaki, T. Masui, H. Narita, Tetsu-to-Hagane 66 (9), 1317-1326 (1980).
- [50] C. Li, J.T. Gao, F.Q. Wang, Ironmaking and Steelmaking, 1-6 (2016).
- [51] C. Li, J. Gao, Z. Wang, ISIJ Int. 57 (4), 4 (2017).
- [52] C. Li, J. Gao, Z.C. Guo, Metal. Mater. Trans. B 47 (3), 1516-1519 (2016).
- [53] J. Gao, Y. Zhong, L. Guo, Metal. Mater. Trans. B 47 (2), 1080-1092 (2016).
- [54] K. Yokoyama, H. Kubo, K. Mori, T. Iron Steel I. Jpn. 47 (10), 1541-1548 (2007).
- [55] H. Kubo, M.Y. Kazuyo, T. Nagasaka, T. Iron Steel I. Jpn. 50 (1), 59-64 (2009).
- [56] X.R. Wu, G.M. Yang, L.S. Li, Ironmaking and Steelmaking 41 (5), 335-341(2014).
- [57] M.Y. Kazuyo, Trans. T. Iron Steel I. Jpn. 50 (3), 306-312 (2010).
- [58] J. Diao, B. Xie, Y. Wang, ISIJ Int. 52 (6), 955-959 (2012).
- [59] Y.H. Wang, B. Xie, J. Diao, Chinese J. Eng. 33 (3), 323-327 (2011).
- [60] Z.H. Xu, Steel slag phosphate fertilizer production, 1962, China Industry Press, Beijing (in Chinese).
- [61] F.S. Li, X. Li, Y.L. Zhang, Metal. Mater. Trans. B 48 (5), 1-12 (2017).
- [62] F.S. Li, Y.L. Zhang, Z. Guo, JOM-Us 69 (2), 1624-1631 (2017).
- [63] F.S. Li, Y.L. Zhang, Z. Guo, JOM-Us 69 (9), 1632-1638 (2017).