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BURDEN OPTIMISATION OF LUMP CHARGE MATERIALS FOR FOUNDRY FURNACES

Calculation of economically optimum charge burden for foundry furnaces depends on a solution that can be found in the 
field of mathematical linear programming. A traditional linear optimisation method means looking for continuous variables that 
can define portion of every charge component.

Sometimes, it can be observed that a calculated portion of charge material with a defined lump mass is rounded up, which 
is wrong because the charge burden prepared in such a way may either show a mistaken chemical composition, or  it can entail 
a significant cost. With charge materials characterised by defined mass lumps, it is recommended to use a modified method of 
integer linear optimisation.

This article contains definitions of a goal function and a system of constraints considering the charge materials as stated 
above. In addition, a sample calculation has been included hereto to show such optimisation for a selected process of metal melt-
ing in a casting furnace.
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1. Introduction

The usual procedure applied during optimisation of the 
cheapest charge burden for foundry furnaces depends on estab-
lishing a precise proportion of every charge material xj, so that 
the goal function as given below [1-3]

 
1

N

j j
j
c x   (1)

can reach its minimum while the following constraints are 
imposed:
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where:
 N – number of charge materials,
 cj – unit price of the j-th charge component, for example 

€/kg,

 xj – mass fraction of the j-th charge material, kg,
 Aij – content of i-th element in the j-th charge component, 

%,
 Ai

d, Ai
g – lower and upper level of i-th element content in the 

calculated charge material, %,
 mw – weight of the calculated charge material, kg,
 xj

d, xj
g – lower and upper limit of the content of the j-th com-

ponent in the charge material, kg,
 M – number of chemical elements.

Considering that a goal function and a system of constraints 
are exclusively expressed as linear functions, the task can be 
solved by adopting a selected method of linear programming 
like, for example, method simplex [4]. Variables xj are continuous 
variables in this example. Calculation of charge burden using 
initial data as given in Table 1, can be an example task including 
such variables.

In this example, linear programming helps to calculate 
quality proportions xj ( j = 1,2,…,8) in such a way that a goal 
function as given here:

 
1 2 3 4

5 6 7 8

0, 40 0,27 0,25 0,45
1,30 0,98 0,49 5,00
x x x x
x x x x  (3)

can reach its minimum value under the constraints:
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The solution of linear optimisation task (3)-(4) is provided 
in Table 2.

TABLE 2
Charge burden for input data included in Table 1

Material Weight, kg Chemical Constitution
x1 Pig iron 960,186

C = 3,10%, Si = 1,85%, 
Mn = 0,65%, P = 0,03%, 
S = 0,03%, Cu = 0,50%

x2 Iron scrap 1200,000
x3 Steel scrap 725,555
x4 Sphero scrap 250,000
x5 FeSi 0,000
x6 FeMn 9,540
x7 SiC 42,800

Cost = 0,34 €/kgx8 Cu 11,919

The charge burden as presented in Table 2 will constitute 
a basis for further calculations and comparisons.

2. Algorithm for charge burden optimisation when using 
defined lump mass materials

In foundry manufacturing, some charge materials like pig 
iron and ferrous alloys appearing in the form of ingots, batches 
of steel plates or shavings briquettes are characterised by deter-
mined weight of their lumps.

It has to be underlined that rounding up of the results of 
continuous linear optimisation to the closest full mass iteration 
of a defined component lump, may lead to deviations like inap-
propriate chemical composition of the charge burden or higher 
cost as compared to another material that fulfils all the accepted 
objectives.

If, for example, along with the data shown in Table 1, weight 
of particular bits of materials is introduced according to Table 3, 
that can bring a result of appropriate rounding up of calculation 
scores from Table 2, and, consequently, it can be possible to 
achieve charge burden calculation as shown in Table 4.

TABLE 3

Assumed mass of selected charge materials lumps

Material Mass of single lump, kg
x1 Pig iron 15
x3 Steel scrap 20
x5 FeSi 1
x6 FeMn 2
x7 SiC (bag) 25

TABLE 4

Charge burden calculation based on the input data from Table 1 and 
Table 3 and rounded up portions values of selected materials

Material Weight, kg Chemical Constitution
x1 Pig iron 960

C = 3,16%, Si = 1,98%, 
Mn = 0,66%, P = 0,03%, 
S = 0,03%, Cu = 0,47%

x2 Iron scrap 1199
x3 Steel scrap 720
x4 Sphero scrap 250
x5 FeSi 0
x6 FeMn 10
x7 SiC 50

Cost = 0,34 €/kg
x8 Cu 11

TABLE 1

Chemical composition, cost, constraints and final weight of the charge materials

Material
Chemical composition Cost Limit

C Si Mn P S Cu €/kg kg
x1 Pig iron 4,30 0,75 0,43 0,03 0,02 0,40 ≥ 200
x2 Iron scrap 2,80 1,60 0,50 0,04 0,03 0,35 0,27 ≤ 1200
x3 Steel scrap 0,35 0,20 0,20 0,01 0,03 0,25
x4 Sphero scrap 3,50 2,40 0,75 0,04 0,02 0,45 ≥ 250
x5 FeSi 0,12 68,00 1,30
x6 FeMn 6,40 1,00 77,00 0,98
x7 SiC 29,00 59,00 0,49
x8 Cu 99,00 5,00

Final charge 3,10÷3,30 1,65÷1,85 0,65÷0,80 max. 0,10 max. 0,08 0,50÷0,70 mw = 3200 kg

 (4,3x1 + 2,8x2 + 0,35x3 + 3,5x4 + 0,12x5 +
 + 6,4x6 + 29x7 ≥ 3,1·3200
 4,3x1 + 2,8x2 + 0,35x3 + 3,5x4 + 0,12x5 +
 + 6,4x6 + 29x7 ≤ 3,3 ·3200
 0,75x1 + 1,6x2 + 0,2x3 + 2,4x4 + 68x5 + x6 +
 + 59x7 ≥ 1,65·3200
 0,75x1 + 1,6x2 + 0,2x3 + 2,4x4 + 68x5 + x6 +
 + 59x7 ≤ 1,85·3200
 0,43x1 + 0,5x2 + 0,2x3 + 0,75x4 + 77x6 ≥ 0,65·3200
 0,43x1 + 0,5x2 + 0,2x3 + 0,75x4 + 77x6 ≤ 0,8·3200
 0,03x1 + 0,04x2 + 0,01x3 + 0,04x4 ≤ 0,1·3200
 0,02x1 + 0,03x2 + 0,03x3 + 0,02x4 ≤ 0,08·3200
 0,35x2 + 99x8 ≥ 0,5·3200
 0,35x2 + 99x8 ≤ 0,7·3200
 x1 ≥ 200
 x2 ≤ 1200
 x3 ≤ 1300
 x4 ≥ 250
 x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 3200
 x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0)

(4)
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In the calculation shown in Table 4 the content of Si in the 
final charge is higher than the accepted levels as given in Table 1. 
Respectively, the content of Cu is lower.

Accepting index k, to mark a number of a charge component 
(k ≤ N) for which one lump weight will show pk, the system of 
constraints can be defined as follows:
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The optimisation task comes down to setting down such 
fractions proportions xj, that the goal function (1) is minimised 
under the constraints (5).

The problem can be solved by adopting a branch and bound 
method.

Considering that different values can be displayed in pk, like 
the ones shown in Table 3, the branch and bound method requires 
some modification where a key factor will be an order in which 
variables xk will be chosen for particular stages of division and 
constraints modification process.

3. Calculation example

Based on the input data contained in Tables 1 and 3, opti-
misation of charge burden lies in designating appropriate values 
xj so that the goal function is minimum under the following 
constraints:

In the first calculation stage, a task is to be solved using 
continuous variables xj as defined by functions (3) and (4). The 
results of this stage can be found in Table 2.

Using a branch and bound algorithm, along with a vari-
able x7 that has the biggest lump mass value (25 kg), the aim 
is to solve two optimisation tasks P1 and P2 which include an 
expanded system of constraints (6) according to Table 5, keeping 
the same goal function (3).

Continuous variable x7 = 42,8 kg, hence in task P1 inequal-
ity x7 ≤ 25 has to be added, whereas in task P2, the inequality 
to be added is x7 ≥ 50.

TABLE 5

Tasks P1 and P2 – results

Optimisation task
variable x7

P1 P2

System of constraints
7

6
25x

 
7

6
50x

Charge burden

x1 1090,23 x1 1137,66
x2 1200,00 x2 827,54
x3 608,79 x3 911,08
x4 250,00 x4 250,00
x5 4,94 x5 0,00
x6 9,12 x6 10,48
x7 25,00 x7 50,00
x8 11,92 x8 13,24

Cost of charge, €/kg 0,35070 0,35300

As the charge cost in task P1 is lower than in task P2, ac-
cording to the branch and bound algorithm, the next step should 
be two subsequent tasks which necessitate adding to the system 
of constraints from task P1 either the inequality x3 ≤ 600 kg 
(task P3), or the inequality x3 ≥ 620 kg (task P4). The calculation 
results of the tasks P3 and P4, where variable x1 is considered, 
have been shown in Table 6.

The calculation results of the tasks from P7 to P10, where 
variables x6 i x5 are considered, have been shown in Table 7.

In task P10, variable x7 is not a whole multiple of 25 kg, 
hence optimisation P11 has to be carried out under condition 

(4,3x1 + 2,8x2 + 0,35x3 + 3,5x4 + 0,12x5 +
+ 6,4x6 + 29x7 ≥ 3,1·3200

4,3x1 + 2,8x2 + 0,35x3 + 3,5x4 + 0,12x5 +
+ 6,4x6 + 29x7 ≤ 3,3·3200

0,75x1 + 1,6x2 + 0,2x3 + 2,4x4 + 68x5 +
+ x6 + 59x7 ≥ 1,65·3200

0,75x1 + 1,6x2 + 0,2x3 + 2,4x4 + 68x5 +
+ x6 + 59x7 ≤ 1,85·3200

0,43x1 + 0,5x2 + 0,2x3 + 0,75x4 + 77x6 ≥ 0,65·3200
0,43x1 + 0,5x2 + 0,2x3 + 0,75x4 + 77x6 ≤ 0,8·3200

0,03x1 + 0,04x2 + 0,01x3 + 0,04x4 ≤ 0,1·3200
0,02x1 + 0,03x2 + 0,03x3 + 0,02x4 ≤ 0,08·3200

0,35x2 + 99x8 ≥ 0,5·3200
0,35x2 + 99x8 ≤ 0,7·3200

(6)

x1 ≥ 200
x2 ≤ 1200
x3 ≤ 1300
x4 ≥ 250

x1 mod 15 = 0
x3 mod 20 = 0
x5 mod 1 = 0
x6 mod 2 = 0
x7 mod 25 = 0

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 3200
x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0)
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x7 ≤ 0, and optimisation P12 under condition x7 ≥ 25. The results 
of these calculations have been presented in Table 8.

In task P12 all the required variables are full multiples of 
defined weight of the lumps. Therefore, it is finally the optimum 
charge burden with parameters as shown in Table 9.

The charge burden as presented in Table 9 is considerably 
different from the one (Fig. 1) achieved due to continuous linear 
optimisation (Table 2) apart from the price which in the first 
case, is slightly higher.

TABLE 6

Tasks P3, P4, P5 and P6 – results

Optimisation task
variable x3 variable x1

P3 P4 P5 P6

System of constraints 7

3

6
25

600
x
x

7

3

6
25

620
x
x

 7

3

1

6
25

600
1095

x
x
x

 7

3

1

6
25

600
1110

x
x
x

Charge burden

x1 1099,11 x1 1109,46 x1 1095,00 x1 1110,00
x2 1200,00 x2 1168,90 x2 1200,00 x2 1200,00
x3 600,00 x3 620,00 x3 600,00 x3 589,24
x4 250,00 x4 250,00 x4 254,24 x4 250,00
x5 4,88 x5 5.43 x5 4,77 x5 4,79
x6 9,09 x6 9,18 x6 9,07 x6 9,06
x7 25,00 x7 25,00 x7 25,00 x7 25,00
x8 11,92 x8 12,03 x8 11,92 x8 11,92

Cost of charge, €/kg 0,35107 0,35171 0,35111 0,35153

TABLE 7

Task P7, P8, P9 and P10 – results

Optimisation task
variable x6 variable x5

P7 P8 P9 P10

System of constraints
7

3

1

6

6
25
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1095
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Charge burden

x1 908,04 x1 1095,00 x1 1063,51 x1 1095,00
x2 1200,00 x2 1200,00 x2 1200,00 x2 1200,00
x3 566,80 x3 600,00 x3 600,00 x3 600,00
x4 480,24 x4 253,29 x4 285,57 x4 253,32
x5 0,00 x5 4,79 x5 4,00 x5 5,00
x6 8,00 x6 10,00 x6 10,00 x6 10,00
x7 25,00 x7 25,00 x7 25,00 x7 24,76
x8 11,92 x8 11,92 x8 11,92 x8 11,92

Cost of charge, €/kg 0,35497 0,35127 0,35160 0,35132

4. Summary

A modified model for charge burden optimisation for cast-
ing furnaces which has been presented in this article can help 
improve technological precision aspects of smelting processes 
thanks to accepting the idea of using charge materials with 
defined lump weight.

The modified branch and bound algorithm, known in the 
theory of integer linear programming, enables effective desig-
nation of charge components proportions while using different 
forms of charge materials (lumps, briquettes, ingots, loose or 
granular products).
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TABLE 8

Task P11 and P12 – results

Optimisation task
variable x7

P11 P12

System of constraints

7
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Charge burden

x1 1095,00 x1 1095,00
x2 1200,00 x2 1200,00
x3 392,91 x3 600,00
x4 470,75 x4 253,08
x5 19,42 x5 5,00
x6 10,00 x6 10,00
x7 0,00 x7 25,00
x8 11,92 x8 11,92

Cost of charge, €/kg 0,36777 0,35132

TABLE 9

The optimum charge burden for the selected charge materials lump 
weight

Material Weight, kg Chemical Constitution
x1 Pig iron 1095,00

C = 3,11%, Si = 1,65%, 
Mn = 0,67%, P = 0,03%, 
S = 0,03%, Cu = 0,50%

x2 Iron scrap 1200,00
x3 Steel scrap 600,00
x4 Sphero scrap 253,08
x5 FeSi 5,00
x6 FeMn 10,00
x7 SiC 25,00

Cost = 0,35 €/kgx8 Cu 11,92
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Fig. 1. Comparison of the optimization results using two different calculation methods: burden charge with continuous values (Table 2) and 
burden charge with lump materials (Table 9)
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