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ANALYTICAL DESCRIPTIONS OF DYNAMIC SOFTENING MECHANISMS FOR Ti-13Nb-13Zr BIOMEDICAL ALLOY 
IN SINGLE PHASE AND TWO PHASE REGIONS

Dynamic softening behaviors of a promising biomedical Ti-13Nb-13Zr alloy under hot deformation conditions across 
dual phase α + β and single phase β regions were quantitatively characterized by establishing corresponding dynamic recovery 
(DRV) and dynamic recrystallization (DRX) kinetic models. A series of wide range hot compression tests on a Gleeble-3500 
thermo-mechanical physical simulator were implemented under the strain rate range of 0.01-10 s−1 and the temperature range of 
 923-1173 K. The   apparent differences of flow stress curves obtained in dual phase α + β and single phase β regions were analyzed 
in term of different dependence of flow stress to temperature and strain rate and different microstructural evolutions. Two typical 
softening mechanisms about DRV and DRX were identified through the variations of a series of stress-strain curves acquired from 
these compression tests. DRX is the dominant softeni  ng mechanism in dual phase α + β range, while DRV is the main softening 
mechanism in single phase β range. The DRV kinetic model for single phase β region and the DRX kinetic model for dual phase 
α + β region were established respectively. In addition, the microstructures of the compressed specimens were observed validating 
the softening mechanisms accordingly.
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1. Introduction 

Titanium (Ti) and its alloys are nowadays the most attractive 
metallic biomaterials in contrast to the ceramic and polymeric 
biomaterials which possess poor mechanical properties [1,2]. 
In the early age, Ti-6Al-4V and Ti-6Al-7Nb alloys had been 
applied to replace other alloy systems because of their high 
strength to weight ratio, superior biocompatibility and corrosion 
resistance, good mechanical properties and low elastic modu-
lus [3]. However, these alloys are demonstrated unsuitable for 
biomedical applications due to the toxic effect of both Al and V 
[4,5]. Thus, the β titanium alloy Ti-13Nb-13Zr was developed 
and has been proved to be well suited for surgical implant such 
as artificial spines, artificial thighbones and hip joints, etc., 
  which are used under fatigue conditions. The fatigue property 
of a material largely depends on the microstructures obtained 
by heat treatment or thermomechanical treatment. Hot deforma-
tion is an effective thermomechanical treatment method for the 
improvement of strength-ductility balance by proper ref  inement 
of alloy microstructures, which significantly improves the quality 
of life of the recipients.

In the last few decades, extensive studies have been carried 
out to describe the hot deformation behavior of titanium alloys 
[6-10]. During the hot deformation, multiple dynamic softening 
mechanisms such as dynamic recovery (DRV), dynamic recrys-

tallization (DRX), meta-dynamic recrystallization (MDRX) 
and dynamic strain   induced transformation (DSIT) may take 
place, and the grains can be refined or homogenized [11]. These 
mechanisms produce strain-softening that neutralizes the work 
hardening due to the new dislocation formation in plastic defor-
mation proceeding. The result is the global stress diminution. The 
deep understanding of the fundamental softening mechanisms 
is a prerequisite for achieving desired microstructures of final 
part in deformation processing. The modeling of softening kine-
tics is of special importance in forming processes because any 
feasible mathematical simulation needs accurate description of 
the underlying plastic deformation behavior.

A few reported works have associated the work-hardening 
and dynamic strain-softening behaviors with relative deformation 
mechanisms for metallic materials [12-14]. Work-hardening   and 
dynamic softening effects have been considered interdependent 
due to the fact that the driving force for dynamic softening is 
provided by distortion energy from work-hardening process, 
meanwhile the softening effect makes the continuous strain ex-
tending possible to induce subsequent hardening [15]. There ex-
ists dynamic competitive procedure between the work-hardening 
resulting from dislocation reduplication, pileup and tangle, and 
the softening resulting from the DRV and DRX [16].

Cui et al. [17] investigated the hot deformation behavior 
of Ti-6Al-7Nb in two-phase α + β region. Momeni et al. [10] 
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analyzed different microstructural evolutions through flow 
stress curves obtained via conducting hot compression tests of 
Ti-6Al-4V alloy in dual phase α + β and single phase β regions. 
Warchomicka et al. [9] indicated t hat DRV and DRX of β phase 
were also responsible for the flow softening of a near β titanium 
alloy, Ti-5Al-5Mo-5V-3Cr-1Zr. Ning et al. [15] constructed 
  segmented functions to describe the competition between DRV 
and DRX during hot deformation for TC18 (Ti-5Al-5Mo-5V-
1Cr-1Fe) titanium alloy. Quan et al. [18] quantitatively analyzed 
the dynamic softening behaviors induced by DRX by combining 
Johnson-Mehl-Avrami-Kolmogorov (JMAK) kinetics equation 
with work-hardening (θ = ∂σ /∂ε) characteristics for Ti-10V-
2Fe-2Al Alloy. on the experimental front, dynamic softening 
behaviors for metallic materials during hot deformation has 
been studied before, but quite rare studies have been found in 
the literature on modeling the softening kinetics of Ti-Nb-Zr al-
loys during hot deformation across dual phase α + β and single 
phase β regions. Lin et al. [19] improved the classical disloca-
tion density-based models to characterize the hot deformation 
behaviors and grain size evolution.

The aim of present research is to investigate different 
dynamic softening behaviors of   Ti-13Nb-13Zr Alloy via iso-
thermal compression tests performed across dual phase α + β 
and single phase β regions. Through the further analysis of the 
stress-strain curve variation under different deformation condi-
tions, different dominant softening mechanisms of DRV, DRX 
were identified for single phase β and dual phase α + β regions, 
which were verified by metallographic analysis. Differ  ent from 
other previous investigations, the present investigation has been 
carried out in order to develop a general methodology that could 
be employed to conduct a rational analysis and modeling of the 
different dominant softening mechanisms for titanium alloys 
hot-worked in single phase β and dual phase α + β regions, that 
is the DRV kinetic model for single phase β region and the DRX 
kinetic model for dual phase α + β region.

2. Experimental procedures

The material investigated in this work  is as-rolled Ti-13Nb-
13Zr alloy with a chemical composition (wt.%) of Nb-14.6, 
Zr-13.3, Fe-0.02, N-0.015, C-0.03, Ti-balance. The β transus of 
Ti-13Nb-13Zr alloy is about 1015 K. Microstructure of the as-
received specimen is shown in Fig. 1. Before the compression 
experiments the as-rolled alloy ingot was beta-solution treated 
at 1073K for 30 min to acquire homogenized microstructure, 
and then followed by water quenching (WQ). Cylindrical 
compression samples of 15 mm height and 10 mm diameter 
were prepared with the axis along the rolling direction of the 
as-received plate according to the ASTM E209 standard. In 
the following each compression, a computer-controlled, servo-
hydraulic Gleeble-3500 thermo-mechanical simulator was 

adopted. On this machine two K-type thermocouple wires were 
welded in the middle of the sample before heating to record the 
real-time temperature of the specimen, which forms a feedback 
loop for the dynamic temperature adjustment and controlling 
under the assist of a thermo-coupled-feedback-controlled AC 
current loading on the two ends of a cylindrical sample. After 
that the specimen was fixed at the exact center of the anvils 
with two graphite foil disks with a diameter of 20 mm inserted 
between the specimen ends and anvils as lubricant to reduce 
friction between the anvils and the sample. In the following, the 
specimen was resistance heated to the deformation temperature 
at a heating rate of 10 K/s, immediately followed by holding 
at this temperature for 180s, aiming to obtain a uniform tem-
perature field. This heated specimen was compressed to a true 
compressive strain of 0.9163 (a height reduction of 60%). After 
completion of each compression, the hot deformed specimen 
was immediately quenched in water. As above, tot al twenty-
four compressions were repeatedly conducted corresponding 
to six different temperatures of 923 K, 973 K, 1023 K, 1073 K, 
1123 K, and 1173 K, and four different strain rates of 0.01 s–1, 
0.1 s–1, 1 s–1, 10 s–1. Fin    a  lly, these deformed specimens were 
sectioned parallel to the compression axis for microstructure 
observations. After being polished mechanically and etched, the 
exposed surfaces were observed by optical microscope (OM). 
The corrosion liquid solution was the Kroll’s reagent (5% HNO3, 
10% HF and 85% H2O).

Fig. 1. Microstructure of the as-received specimen

During the compression process, the variations of stress 
and strain were monitored continuously by a personal computer 
equipped with an automatic data acquisition system. The true 
stress and true strain were derived from the measurement of 
nominal stress-strain relationships according to the following 
formula: σT = σN(1 + εN), εT = ln(1 + εN), where σT the true stress, 
σN the nominal stress, εT the true strain and εN the nominal strain.



2031

3. Descriptions of dyn  amic softening behaviors

3.1. Characteristics of stress-strain curves

Typical flow stress curves obtained at low and high tem-
peratures, i.e. in two phase α + β and single phase β regions, are 
shown in Fig. 2, which shows that both deformation temperature 
and strain rate have considerable influence on the flow stress. 
Apparently, the flow stress increases as the response of increas-
ing strain rate and decreasing deformation temperature. From 
Fig. 2a-d, it can be summarized that flow stress increases in the 
initial work-hardening regime, reaching a broad peak or stress 
plateau before dropping in the softening regime. In the two phase 
region of α + β, the flow stress increases and reaches a broad 
peak followed by a steep downfall up to a plateau, followed by 
a gradual fall toward the steady state stress. This behavior is more 
obvious at higher strain rates. This flow softening phenomenon 
may well indicate the occurrence of DRX in traditi   onal qualita-
tive point of view. Otherwise, in the single phase β region, the 
rate of work hardening is almost lower than that in the two phase 
region and the flow curve degrades more gently leaving a blunt 
peak, or even no peak, only a flat top. The flat top shapes of true 
stress-true strain curves show resemblance to that of materials 
undergoing DRV. The apparent discrepancies between these flow 
curves obtained at temperatures below and above β transus, i.e. 

in two phase and in single phase regions respectively, reflect the 
different microstructural evolutions and restoration processes 
that dominate during individual regime.

3.3. Elementary mechanisms of dislocation and slipping

The flow softening mechanism in hot working of two-phase 
titanium alloys is quite complex. Different softening mechanisms 
occur due to the two different crystal structures in different 
temperature ranges. For near β Ti-13Nb-13Zr titanium alloy, the 
α + β coexistence results in the complexity of hot deformation 
behaviors owing to different lattice structures and mechanical 
properties. The atomic unit cells of the hexagonal close packed 
(hcp) α titanium and the body-centered cubic (bcc) β titanium 
are schematically shown i  n Fig. 3 with their most densely packed 
planes and directions highlighted.

The three most densely packed lattice planes and the lat-
tice parameters of the low temperature α phase are illustrated 
in Fig. 3a. As for the bcc β phase, the unit cell with the most 
densely packed lattice planes and the lattice parameter is shown 
Fig. 3b. In hcp crystals (Fig. 3a), the slip systems with the same 
a type Burgers vector of <112–0> are (0001), {101–0} and {101–1}, 
respectively, which only possesses four independent slip systems. 
Therefore, the operation of the systems {101–1} with a c + a type 
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Fig. 2. True stress-strain curves of Ti-13Nb-13Zr alloy obtained by Gleeble-3500 under different deformation temperatures with strain rates (a) 
0.01 s–1, (b) 0.1 s–1, (c) 1 s–1, (d) 10 s–1
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Burgers vector of <112–3> needs to be activated to satisfy von 
Mises yield criterion which requires at least five independent slip 
systems for a homogeneous plastic deformation of polycrystal. 
In the β single-phase region with body-centered cubic (bcc) 
crystal structure at elevated temperature above β transus, the 
basal slip systems are {110}, {112}, {123}, all with the single 
well-defined Burgers vector of <111>.

The stacking fault energy (SFE) variation of different crystal 
structure types play a significant role in the deformation of met-
als due to its influence on dislocation mobility and morphology, 
thus significantly influences its dynamic softening behaviors 
during hot deformation [20]. For the bcc β phase with high SFE, 
sufficient dislocation rearrangement and elimination annihilates 
most of the dislocation structures formed in plastic deformation, 
which leading to the lack of driving force for recrystallization 
and consequent greater difficulty in onset of DRX [21]. In that 
context, DRV process is most pronounced restoration process 
owing to non-conservative mobility and a high cross-slip rate that 
enables dislocation reordering and hence subgrain formation. If 
recovery reduces the internal elastic energy to a very large extent, 
for instance the deformation rate is very low or in cases where 
the dislocations are very mobile and hence can rearrange very 
effici  ently, recrystallization can be even entirely suppressed. In 
hcp α phase with low SFE (cross-slip and dynamic and static 
recovery are inhibited), the dislocation density increases to a high 
level, and eventually the local dislocation density variation is 
high enough to permit the nucleation of new grains, followed 
by the long-range migration of high angle boundaries (HABs). 
In that context, DRX restoration process will be activated   and 
become the dominant softening mechanism.

So in conclusion, DRV is the dominant softening mecha-
nism before critical condition is satisfied. DRX process will be 
activated after sufficient structure preparation, and driving force 
increases as a result of the competition between WH and DRV. 
In α + β two-phase temperature region, the hot deformation 

behaviors of Ti-13Nb-13Zr titanium alloy present typical DRX 
softening mechanism. However, in β-phase temperature region, 
the hot deformation behaviors in predominant β-phase present 
distinct DRV softening mechanism, whereas some discontinuous 
dynamic recrystallization may occur along β grain boundaries 
[22]. When temperature increases across β-transus, from a α + β 
two-phase temperature to a β-phase temperature, the correspond-
ing softening mechanism shift from DRX + DRV to DRV.

4. Characterization of dynamic softening kinetics

4.1. Determination of important material parameters

As claimed in many pioneering works focusing on the 
DRV and DRX behaviors [23-25], as for here the investigated 
Ti-13Nb-13Zr alloy, important material parameters for establish-
ing DRV and DRX kinetic models can be determined by a series 
of regression analysis on the stress-strain data. In addition, it is 
valuable to note that such regression analysis are incl uded in 
the solving process of an Arrhenius type equation (shown as 
Eq. 1) which has been widely used to describe the interactional 
relationships of metallic material among the flow stress (σ), 
temperature (T ) and strain rate (ε· ) [26]. In this work it is also 
introduced and adopted.

 ( ) exp( )QAF
RT

  (1)

where A is a constant frequency factor, F(σ) is a function     of flow 
stress give n by   the following Eq. 2.
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Fig. 3. Unit cells of α and β phase (a) slip planes and slip directions in the hcp α phase, (b) slip planes and slip directions in the bcc β phase
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where σ is true stress (MPa) for a given stain, A, α, n' and n are 
material constants, α = β/n'.

The effects of temperature and strain rate on the deforma-
tion behaviors is commonly integrated by a Zener-Hollomon 
parameter, Z, expressed by Eq. 3 representing the temp  erature 
compensated strain rate [24]. The hyperbolic law in Arrhenius 
type equation gives a b  etter approximation between parameter Z 
and flow stress. Then, flow stress (σ), can be written as a function 
of Z parameter showing in Eq. 4 [27].

 exp( )QZ
RT

  (3)

where ε·  is strain rate (s–1), R gas constant (8.31 J·mol–1·K–1), 
T absolute temperatu re (K), Q apparent activation energy for 
deformation (KJ·mol–1).

 
1/21/ 2/1 ln 1

n nZ Z
A A

 (4)

where A is a constant frequency factor, Z is Zener-Hollomon 
parameter given by the previo us Eq. 1

The constants of the hyperbolic sine equation can be deter-
mined by substituting each F(σ) of Eq. 2 into Eq. 1 and taking 
natural logarithms on both sides. The mathematical expressions 
are shown in the following Eqs. 5-7.

 ln ln lnQ A n
RT

  (5)

 ln lnQ A
RT

  (6)

 ln ln ln[sinh( )]Q A n
RT

  (7)

Eq. 5 and Eq. 6 indicate obvious linear relationships be-
tween lnε·  and lnσ, and lnε·  and σ. T he values of n' and β can be 
calculated from the slopes of the linear fitted lines in lnε· – lnσ 
and lnε· – σ plots, respectiv  ely. Here the mean values of the 
material constants are shown in the following: n' = 6.04213, 
β = 0.065015, α = β/n' = 0.0108.

Differentiating Eq. 7 with respect to 1/T and ln[sinh(ασ)]  
respectively ends to:

 ln
ln[sinh( )] T

n   (8)

 ln[sinh( )]
(1 )

Q Rn
T   (9)

Therefore, the linear relationships of lnε· – ln[sinh(ασ)] and  
ln[sinh(ασ)] – 1/T were obtained as shown in Fig. 5a-b. The mean 
value of all the slopes of lnε· – ln[sinh(ασ)] (Fig. 5a) was accepted 
as n value, and here it was calculated as 4.303. The values of Q 
were determined from the slopes of ln[sinh(ασ)] vs. 1/T (Fig. 5b) 
through averaging the values under different strain rates.

Substituting α, n, Q and four sets of ε·, T and the peak stress 
data from compression tests into Eq. 7, the mean value of mate-
rial constant A was obtained as 2.881×1017s–1.

Thus, the relationships between ε·, T and σ of Ti-13Nb-13Zr 
alloy were expressed as Eq. 10.

 5
4.30319 4.064418 102.3431 10 sinh(0.0108 ) exp( )

RT
  (10)

Substituting th  e material constants  A, a, n and Z into Eq. 5, 
the expression of peak stress (σp), can be given by:
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Z
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The peak strain (εp) is proposed as fol lows:

 εp = a1Z m1 (12)

where Z is Zener-Hollomon parameter expr essed by Eq. 3, a1 
and m1 are material constants.
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Substituting Eq. 3 into Eq. 12 and then taking natural loga-
rithm on both sides, the expression can be shown as follows:

 p 1 1 1ln ln ln Qa m m
RT

  (13)

As for the value of m1 at a constant deforma tion tempera-
ture, it is easy to acquire from the average value of the slopes 
shown in Fig. 6. Then, substituting m1, Q and a set of ε·, T into 
Eq. 12, the mean value of material constant a1 was obtained as 
0.12051. Accordingly: εp = 0.12051Z 0.03381.
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4.2. Kinetic model for DRV dynamic softening

As mentioned above, at the temperature above 1073 K 
(above β-transus) and the strain rate of 0.01-1s−1, DRV process 
acts as the predominant softening mechanism. Without obvious 
softening effect by DRX, dislocations can only interact with 
each other to decrease the distortion by the combination with 
the same sign and the annihilation with different signs through 
cross-slipping and climbing [28]. Consequently, the flow stress 
tends to increase until the saturated stress (σsat) has been reached 
in the initial work-hardening regime, which indicates that the 
competition between working-hardening and dynamic softening 

predominated by DRV achieves the balance [29]. The saturated 
stress (σsat) is defined as the maximum hardening effect during 
the deformation process with only DRV softening mechanism, 
which can be attained through the work-hardening rate (θ) by 
the following Eq. 14:

 DRV
DRV 0   (14)

Recognition the occurrence and the extent of DRV based o n 
experimental observation is a time and cost consumable work, 
and sometimes it needs difficult procedures. The experimental 
method may not be reasonable, especially when the research-
ers require a rapid way to find the evolution of DRV extent. 
Determining the kinetics of DRV by using stress-strain curves 
is relatively complex in comparison with that of DRX mainly 
because of fewer characteristic points existing on the stress-strain 
curves with DRV softening.

Kocks and Mecking [16] proposed a model (K–M model) 
to describe the dislocation evolution under the competition 
between work-hardening and DRV softening by considering 
a homogeneous dislocation distribution, and it has been widely 
employed to characterize its density variation as:

 DRV  h r
d
d

  (15)

where h is the rate of work hardening and r specifies the  rate 
of dynamic softening induced by DRV at a specific strain rate 
and temperature.

Considering that h and r are strain independent, integration 
of Eq. 15 leads to:

 1 exp( ) ch r
r r

  (16)

The constant value of c1 can be calculated by substituting 
the  initial dislocation density ρ0 before plastic deformation into 
Eq. 16. Accordingly:

 0 exp( ) (1 exp( )  )hr r
r

  (17)
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The widely used Taylor relation was utilized to characterize 
the  response of flow stress to dislocation density as [14]:

 GMb   (18)

where α is Taylor constant, ~0.5, M represents Taylor conversion 
f actor from shear to normal strain, ~3.06 [30]. G is the shear 
modulus and b is the magnitude of Burgers vector.

As the strain reaches larger values (ε → ∞), flow stress 
for DRV curves reaches a relative constant value of σsat. By 
considering Eqs. 17 and 18:

 sat  hGMb
r

 (19)

The flow stress model of DRV can be described by [24]:

 
1/22 2 2

sat sDRV at 0  exp r   (20)

where σsat and σ0 are the saturated and initial yield stresses, 
respectively. The f low stress data b efore the critical strain of 
DRX  are ch  osen to determine the coefficients of Eq. 20. As no 
obvious yield points on the high temperature stress-strain curves, 
flow stresses with plastic deformation up to 0.2% were taken as 
the initial yield stresses [31-33].

By differentiating Eq. 20 with respect to ε, it can be shown 
that:

 

1/22 2 2
sat sat 0

2 2
sat 0

0.5 exp

exp

d r
d

r r
 
 (21)

Multiplying dσ/dε by σ, leads to the following relation:

 2 2
sat

d 0.5
d

r   (22)

Noted that there is a lin  ear relation of σθ – σ2.Thus the value 
of the recovery parameter r is obtained from regression analysis 
and that of σsat from the intercept.

Rearrangement of Eq. 20 gives:

 
2 2

0
2 2
sat 0

1 exp r   (23)

Strain rate ε· is introduced into Eq. 23 in order to involve 
the effect   of time (t) by:

 start( ) / t   (24)

where εstart is the strain at which the related phenomenon is ini-
tiated. For DRV, the process starts immediately after straining 
[31]. So for DRV:

 start 0 t   (25)

Thus, Eq. 23 is rewritten into the following form:

 
2 2

0
2 2
sat 0

1 exp r t   (26)

The left-hand side of Eq. 26 represents the ratio of the stress 
increment at any time during de formation and the total stress 
variation in the process of DRV. It consists of parameters that 
can be attained from stress-strain curves for the DRV condition. 
Eq. 27 can be considered as the fraction of dynamic recovery 
when the softening mechanisms is dominated by DRV [14].

 DRV 1 exp nX r t   (27)

where the Avrami parameters can be considered as k = rε· and 
time exponent n = 1.

The DRV kinetic model is summarized in Table 1. Fig. 7 
shows the time-dependent D  RV fraction curves under different 
conditions. As it is expected, the fraction of DRV increases 
with increasing the strain or consequently, with the time. The 
increasing rate of XDRV decreases with increasing of time. The 
reason is reducing of the stored energy caused by the dominance 
of work hardening versus work softening at the early stage of 
deformation. The values of XDRV reach unity after a specific 
time, which means the DRV is at a stable dynamic condition. It 
should be noted that the higher the strain rate and the deforming 
temperature are, the faster the process of DRV.

TAB LE 1

DRV kinetic model of Ti-13Nb-13Zr

Quant ity Equation

DRV fl ow stress
1/ 22 2 2

sat sDRV at 0  exp r

Saturated stress

1/21/3.4313 2/3.4313

sat 26 2652.0833ln 1
2.3035 10 2.3035 10

Z Z

Initial yield stress 0 204.6309 6.61358ln Z  

DRV soften coeffi cient 0.1388714210.8353r Z  

DRV fraction DRV 1 exp 1 expX r r t  
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4.4. Kinetic model for DRX  dynamic softening 

Dynamic softening represents a convolution of DRV and 
DRX contributions. A variety of data-manipulation techniques 
have been proposed to separate the contribution of DRX, usu-
ally through a subtraction of a portion of the stress which is 
attributed by DRV [34-36]. The work describes specifically the 
mathematical method for separating the contribution of DRX 
on the basis of previous studies.

The critical strain (εc) of material is the prerequisite for 
the research on DRX, which indicating the critical condition of 
predominant dynamic softening mechanism changing from DRV 
to DRX. In previous studies, work-hardening rate (θ = dσ/dε) 
has been widely employed to investigate the microstructural 
transformation during hot deformation. Fig. 8 shows a schematic 
plot of the work hardening rate (θ = dσ/dε) versus stress (σ) [37].

McQueen et al. [23] suggested that the deviation point of 
the linear relationship between θ and σ should be defined as the 
critical strain position. Poliak and Jonas [38] developed a more 
precise method to identify the critical strain by the minimum 
value of –∂θ/∂σ .

In this   research, Poliak-Jonas criterion has been utilized to 
identify the onset of DRX by the presence of inflections in θ – σ 
and minimums in –∂θ/∂σ curves[39]. The values of critical  strain 
are determined through θ – σ curves as shown in Fig. 9a-d. The 

influence of strain rate and temperature on the critical strain can 
be convert into Sellars model as following [14]:

 εc = kεp (28)

where εp is th  e peak strain determined by Eq. 12. It is easy to 
obtain the values of k at constant deformation temperature from 
the slopes shown in Fig. 10. Consequently, εc = 0.4804εp.
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Fig. 10. The relationship between εc and εp

Generally, the recrystallized volume fraction XDRX can be 
expressed by a function of true strain, in the form of a modified 
Avrami equation [40,41]:

 
d

c
DRX d

p
1 exp

k

X   (29)

where XDRX is the v olume fraction of DRX grains. ε is the true 
strain. βd and kd are the Avrami material constants   .

In order to determine the βd and kd in Eq. 29, XDRX should 
be determined firstly. Eq. exhibits a convenient way to determine 

XDRX only from a set of true stress-strain curves [37]. By this way 
the XDRX corresponding to any strain, strain rate and temperature 
can be calculated easily.

 
2 2

drvx drxx
DRX 2 2

drvss drxss
X   (30)

where σdrvx is the theoretical  calculated transient state stress at 
a transient strain (εx) on an ideal DRV softening stress-strain 
curve achieved by a mathematical fitting method (Schematic 
presented in Fig. 8 and Fig. 11), and σdrvss is its steady state 
stress. σdrxx is the transient state stress at strain (εx) on an actual 
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stress-strain curve with both DRV and DRX softening, while 
DRX predominant, and σdrxss is its steady state stress.

Combined Eq. 29 with Eq. 30, the flow stress model of 
DRX can be expressed as follows:

 d

1/22 2 2
drvx drvss drxss

drxx c
d

p
1 exp

k
  (31)

Eq. 29 can be rewritten in double natural logarithm form 
as follows:

 c
d d

DRX p

1ln ln ln ln
1

k
X

  (32)

From Eq. 32, it can be seen that h e values of kd and βd can 
be determined by linear fitting (as Fig. 12) of the relationships 
between ln[–ln(1 – XDRX)] and ln[(ε – εc)/εp] under various 
strains, strain rates and temperatures, since each stress-strain 
curve corresponds to a set of εc εp and XDRX at certain ε. The 
average values of kd and βd were calculated as 0.5994 and 0.9339 
respectively.

The DRX kinetic model solved in this work is listed in 
Table 2, by which the dynamic responses of DRX volume 

fraction to the strain, temperature and strain rate are illustrated 
in Fig. 13a-d. Apparently, the DRX volume fractions increase 
with increasing strai  n, and overall present as normal S-curves. 
Comparing thes  e curves with one another, it is found that the 
DRX volume fraction is higher at a higher temperature or at 
a lower strain rate under a certain strain. Recrystallization kinet-
ics accelerates with decreasing strain rate, as well as increasing 
deformation temperature. The deformation strain required for the 
same amount of DRX volume fraction increases with decreas-
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ing deformation temperature or increasing strain rate. It should 
be noted that complete recrystallization (XDRX = 1) cannot be 
acquired for all deformation conditions.

5. Microstructure evolution during 
hot deformation

Dynamic softening behaviors could be directly reflected 
and identified from the microstructural evolutions during hot 
deformations. The presence of equiaxed or spheroidized grains 
from the frozen microstructures obtained by a hot compression 
has been considered as the significant sign for DRX [  23]. The 
microstructures with wavy β grain boundaries and rare equiaxed 
grains indicate that DRV is t  he main restoration mechanism. 
Typically, the microstructures after hot compressions exhibit 
three distinct morphology: (i) entirely recrystallized grains 
caused by DRX; (ii) only recovered grains caused by DRV; (iii) 
coexistence of recrystallized and recovered grains attribute to 
convolution of DRV and DRX mechanisms [14].

Fig. 14-17 displayed typical microstructures of Ti-13Nb-
13Zr alloy after hot compression in dual phase α + β and single 
phase β regions , which gave a definite information of dynamic 
softening behavior. Different from common circumstances, 
recrystallization takes place at high-temperature regimes above 
α /β transus, which is considered without DRX soften    ing by 
Poliak-Jonas criterion[38]. All the ob  served microstructure evo-
lution indicated that the softening took place by the combination 
of DRV and DRX, while the fraction of each one depends on 

defo  rmation conditions. In each case, the β matrix was partially 
retained. In addition, from Fig. 14-17, it is found that microstruc-
tures show the presence of α' phase in water-quenched specimen 
under higher strain rate of 1-10s–1.

As can be seen in Fig. 14-15, DRX characteristic in dual 
phase α + β region becomes more obvious with strain rates low-
ered, corresponding to the results obtained above. This is due 
to the fact that it is easy for DRX to occur at lower strain rates, 
since the dislocation density and the pile-up energy decrease at 
lower strain rates, and sufficient time is available for annihilation 
of dislocations. Further analysis of these microstructures in dual 
phase α + β, one can find that the fraction of the recrystallized β 
grain increases as deformation temperature increases. In addi-
tion to a small amount of α phase precipitates along the β grain 
boundaries, lath-shaped intragranula  r α precipitates are formed 
within matrix of transformed β grains, especially under higher 
strain rate of 1-10s–1.

In single phase β region (Fig. 16-17), it is clearly observed 
that the β grains boundaries are irregular and even turn into 
serrated grain boundaries, which represents typical dynamic 
recovery characteristic. This indicates that dynamic restoration 
is dominated mainly by DRV at these deformation conditions. 
Moreover, the lower volume fraction of α-phase at higher 
temperatures is the result of α to β transformation. Meanwhile, 
Fig. 16-17c and d shows dynamically recrystallized β grains 
surrounded by irregular boundaries, and also contain subgrains 
inside. This implies that the β grains are formed by discontinuous 
DRX during deformation. As slip of dislocations and mobility of 
grain boundaries are the stronger in higher temperature, a num-

TABLE 2

DRX kinetic model of Ti-13Nb-13Zr

Quantity Equation

DRX fl ow stress

1/2

2 2 2 c
drxx drvx drvss drxss

p

0.9339

0.59941 exp  

Theoretical DRV Steady state stress
1/21/4.4196 1/4.4196

drvss 24 24149.2537ln 1
1.0089 10 1.0089 10

Z Z  

Steady state stress
1/21/6.4967 1/6.4967

drxss 19 19149.2537ln 1
9.9153 10 9.9153 10

Z Z

Peak stress
1/21/4.303 2/4.303

p 19 1992.5926ln 1
2.3431 10 2.3431 10

Z Z  

DRX fraction c
DRX

p

0.9339

0.59941 expX  

Critical strain c p0.4804  

Peak strain 0.03381
p 0.12051Z  
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(a)                                    (b) 

(c)                                    (d) 

Fig. 14. Typical metallography of Ti-13Nb-13Zr alloy after isothermal compression under 923 K with strain rates of (a) 0.01 s–1, (b) 0.1 s–1, (c) 
1 s–1, (d) 10 s–1

  

(a)                                    (b) 

(c)                                    (d) 

Fig. 15. Typical metallography of Ti-13Nb-13Zr alloy after isothermal compression under 973 K with strain rates of (a) 0.01 s–1, (b) 0.1 s–1, (c) 
1 s–1, (d) 10 s–1
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(a)                                    (b) 

(c)                                    (d) 
Fig. 16. Typical metallography of Ti-13Nb-13Zr alloy after isothermal compression under 1023 K with strain rates of (a) 0.01 s–1, (b) 0.1 s–1, 
(c) 1 s–1, (d) 10 s–1

  

(a)                                    (b) 

(c)                                    (d) 
Fig. 17. Typical metallography of Ti-13Nb-13Zr alloy after isothermal compression under 1123K with strain rates of (a) 0.01 s–1, (b) 0.1 s–1, (c) 
1 s–1, (d) 10 s–1
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ber of DRX nuclei appear in the vicinity of grain boundaries as 
shown in Fig. 17b.

An interesting phenomenon could be observed under tem-
peratures above β transus, for instance, Fig. 17a exhibited the 
microstructure compressed at 1123 K and 0.01 s–1. As arrows 
demonstrated, lots of necking could be identified in DRX β 
grains. Similar observation was reported in the hot deformation 
of other titanium alloys [8,15,21]. This is result of the periodic 
competition between DRX and DRV. Multiple DRX nucleation 
and growth would occur but cannot achieve the complete growth 
and separation from deformed portion with distortion exhausted. 
Therefore, the necking phenomenon has been exhibited in the 
DRX β grains.

6. Conclusions

To evaluate the dynamic softening characteristics of a bio-
medical Ti-13Nb-13Zr Alloy, a series of hot compression tests 
in the temperature range of 923-1173 K, and the strain rate range 
of 0.01-10   s–1 using Gleeble-3500 thermo-mechanical physical 
simulator are implemented to obtain the hot flow curves and 
establish the DRV and DRX kinetic models, 
1) Important material parameters for establishing DRV and 

DRX kinetic models were verified by regression analysis 
on the stress-strain data obtained from the hot compression 
tests, for instance, apparent activation energy (Q), peak 
stress (σp), peak strain (εp).

2) The kinetics and fractions of DRV in single phase β re-
gions were determined, which are listed in Table 1. The 
value of the recovery parameter (r) was expressed as 
r = 14210.8353Z –0.13887. Using the variation of disloca-
tion density by strain, the DRV fraction is derived as 
XDRV = 1 – exp(–14210.8353Z –0.13887ε· t).

3) Based on the conventional strain hardening rate curves, the 
dependences of the critical strain εc for DRX initiation on 
the strain for peak stress εp can be specified by the equa-
tion: εc = 0.4804εp, where εp is given by the expression: 
εp = 0.12051Z 0.03381.

4) The kinetic models of DRX in α + β-phase temperature 
range were developed by JMAK equation as shown in Table 
2. The fraction of DRV is derived as

 c
DRX

p

0.9339

0.59941 expX   

5) The microstructures of specimens after hot compression 
tests were observed by optical microscope, which confirm 
the softening mechanisms accordingly.
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