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AUSTENITE GRAIN SIZE ESTIMTION FROM CHORD LENGTHS OF LOGARITHMIC-NORMAL DISTRIBUTION

Linear section of grains in polyhedral material microstructure is a system of chords. The mean length of chords is the linear 
grain size of the microstructure. For the prior austenite grains of low alloy structural steels, the chord length is a random variable 
of gamma- or logarithmic-normal distribution. The statistical grain size estimation belongs to the quantitative metallographic 
problems. The so-called point estimation is a well known procedure. The interval estimation (grain size confidence interval) for 
the gamma distribution was given elsewhere, but for the logarithmic-normal distribution is the subject of the present contribution. 
The statistical analysis is analogous to the one for the gamma distribution.
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1. Introduction

One of the most important factors affecting the phase 
transformations kinetics of undercooled austenite and mechani-
cal properties of phase transformations products of heat treated 
structural steels is the austenite grain size. It depends on the 
temperature of austenitising and a chemical composition of 
steel. Lower austenite grain size decreases the hardenability of 
steel but improves the mechanical properties of quenched and 
tempered steels. In order to protect the steel against undesirable 
grain growth the microalloying elements (MA), such as Ti, 
Nb, V, showing high chemical affinity to interstitial (C, N) are 
added [1]. Compounds forming during reactions between MA 
and interstitials, carbides, nitrides and carbonitrides inhibit the 
austenite grain growth at high temperature. The relationship 
between the mean radius of austenite grains, R and parameters 
of compounds precipitations, (volume fraction, VV, and mean ra-
dius, r) is described by the well known Smith-Zener equation [2]:
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Parameters of compounds controlling austenite grain 
growth can be calculated using thermodynamic [3,4 ] and kinetic 
[5-7] models of compounds precipitation process. 

Knowledge of austenite grain size is essential for prediction 
of heat treatment effect and for estimation of grain size different 
methods are used. One of them is measurements of chord lengths 
of austenite grains. In metallography, the chord lengths measure-
ment for polyhedral microstructures may be reduced to simple 
counting measurements of n chords (or it end points) along a test 

line of length L – the so-called chord counting method [8-10,17]. 
In the prior austenite microstructure of some low alloy structural 
steels, the chord length is a random variable of logarithmic-
normal distribution. The mean chord length, interpreted as 
linear austenite grain size, is a stereological characteristics of 
the material microstructure. The grain size interval estimation 
(confidence interval) is the main subject of this contribution. 
The statistical analysis is analogous to this one for the gamma 
distribution given in [10]. The aim of present work was develop-
ment of accuracy estimation of austenite grain size using chord 
length measurement method in low alloy steels, where austenite 
chord lengths distribution is logarithmic-normal. The article 
includes two main parts. The first one presents the logarithmic-
normal distribution; a simple approximate confidence interval 
for the linear grain size is proposed. The statistical independent 
grain chord lengths is of fundamental meaning. The second part 
contains the structural steels prior austenite grain chord lengths 
having the logarithmic-normal distribution [11-16]. The length 
of sequent chords were measured along test lines. With regard 
to the possibility of grain size interval estimation method given 
in part one, the statistical independence of the sequent chord 
lengths are analysed.

2. Statistics

If for a non-negative random variable X, the random varia ble 
lnX has the normal distribution with statistical parameters m lnX 
and σlnX, then X has the logarithmic-normal distribution with 
probability density function (PDF):
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and statistical parameters mX and σX [8]. The PDF f(x) is uni-
modal of positive skewness. The parameters: σlnX and the vari-
ation coefficient vX = σX /mX fulfill the equation [8]:
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For n statistical independent values (realizations) of X, i.e., 
the xi (i = 1,...,n), the arithmetic mean
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is a value of the random variable (random mean) X–n which has 
a logarithmic-normal distribution with the PDF f(x–n), the mean 
mX and standard deviation σX / .

The random variable X–n is a statistical estimator for mX. 
For given x—n the point estimation is:

 mx ≈ x—n (5)

Again, the normally distributed random variable lnX–n leads 
to the confidence interval for mX. In the simplest case when the 
parameter σlnX is known and for sufficiently large n (n>50), an 
approximative confidence interval for mX may be written: 
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where uα has the usual statistical meaning (α < 0,10). 
For given n and α, because of X–n, the confidence interval 

is a random variable. The end points of the confidence interval 
in Eq. (6) are random variables with the means a1 and a2 re-
spectively. The a1, a2 as functions of n characterise the Eq. (6) 
confidence intervals. As example, these functions for mX = 12 
and σ lnX = 0,5 (a typical values for the austenite chord lengths 
of the analyzed steels in chapter 3 – Experimental) are shown in 
Fig. 1. The figure shows that up to ca. n = 200 the length of the 
interval [a1,a2] decreases rapidly; then (here up to n = 1000) it 
converges slowly to mX.
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Fig. 1. The a1, a2 variables as function of chord number n for the mX 
– confidence intervals of typical chord lengths of logarithmic-normal 
distribution (mX = 12, σ ln x = 0,5)

3. Experimental

The prior austenite microstructure of low alloy structural 
steels (of different chemical composition and heat treatment) 
was investigated in [11-13]). The quantitative metallography 
was made on steel specimen polished surface (after etching in 
saturated aqueous picric acid solution, Fig. 2) by linear sections 
of the microstructure on sequent chords along the test line.

Fig. 2. Typical prior austenite microstructure of a structural steel

For each steel the length of N (N > 990) chords was meas-
ured. The measurement results are x1,x2,...,xN. For the data 
sets the austenite chord lengths distribution correspond to the 
logarithmic-normal one given in Eq. 2, [11-13], Fig. 3. Here, 
for the subsequent statistical analysis 18 homogeneous data-sets 
(denoted as L1,...,L18) are chosen (Table 1).
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Fig. 3. Austenite grain chord length distribution (PDF f (x)) for differ-
ent grain size x = x–N and the approximation with logarithmic-normal 
PDFs

In Table 1, for given data-set of N elements, the austenite 
chord lengths characteristics are determined, in particular, the 
statistical parameters (the arithmetic mean x–N, the standard de-
viation sx and the variation coefficient vx = sx /x–N) and then, the 
parameter s lnx of the suitable logarithmic-normal distribution – 
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calculated using Eq. (3) for the empirical variation coefficient vx. 
From Table 1 it results:
(i) The changing area of  x–N is relatively large, the values be-

long to the interval [7,23; 27,20 in μm] – it is an austenite 
of medium grain size [17]; 

(ii) The vx – parameter is approximately constant, it values 
belong to the interval [0,46; 0,61 in m0] (it is similar to the 
vx – properties of the austenite chords in [10];

(iii) From Eq. (3) it results that the s lnx – parameter is also ap-
proximately constant, it values belong to the interval [0,44; 
0,56 in m0], Fig. 4. The arithmetic mean <slnx> calculated for 
the s lnx – values of the particular data-sets is <s lnx> = 0,50. 
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Fig. 4. Austenite grain chord length parameter s lnx in relation of the 
number of data-sets L1,...,L18

3.1. Independence of chord lengths

The statistical independence of the length of sequent chords 
(along a test line) is a condition for the austenite grain size in-
terval estimation by Eq. (6).

For the data-sets L1,...,L18 statistical independence of 
chord lengths was analysed by the random mean X–n distribution 
(Chapter 2 – Statistics). If the austenite sequent chord lengths 
along the test line: x1, x2,...,xN are independent values (realiza-
tions) of the logarithmic-normally distributed random variable 
X, then, for a given n < N, the arithmetic mean x–n is a value 
of the logarithmic-normally distributed random mean X–n. The 
statistical independence of the chord lengths may be analysed 
by the PDF f(x–n) of the random mean X–n. In a data-set for given 
number n (n=2,3,4,5), there are at most rn disjoint subsets of n 
elements. The arithmetic mean distribution of the rn subsets are 
characterised by the empirical PDF f(x–n). The chi-square test for 
representative data-sets shows that the empirical PDFs f(x–n) are 
consistent with the corresponding PDF of the logarithmic- normal 
distribution of X–n. As an example, fig. 5 shows the comparison 
of empirical f(x–n) functions with the corresponding logarithmic-
normal functions for the data set L6 (N = 1007; n = 2 and n = 5).

From the independence analysis results, that the sequent 
chord lengths in the data-sets L1,...,L18 may be interpreted as 
approximately independent values (realizations) of the corre-
sponding logarithmic-normal distributed random variable X. This 
result make possible the statistical grain size interval estimation 
by the Eq. (6).
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Fig. 5. Comparison of the austenite chord length PDFs f(x–n) with the 
logarithmic-normal PDFs for n = 2 and n = 5 (data set L6: x–n =10,75 
mm, N = 1007)

3.2. Estimation

The length of sequent austenite chords along a test line are 
statistically independent, so the arithmetic mean x–n, in Eq. (4), 
may be estimated by simple chord counting measurements made 
on linear sections [8,9,17]. In the case when a test line of length 
L includes n chords then
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The arithmetic mean x–n in Eq. (7) is a value (realization) 
of the logarithmic-normally random mean X–n. The X–n is an 
estimator for mX, so for given X–n the point estimation of mx is 
presented by Eq. (5). In particular, for the data sets L1,..., L18 
in Table 1 it is n = N and mX ≈ x–N

TABLE 1

Austenite grain chord characteristics

Data set x–N, μm sx, μm vx, μmo s lnx, μmo N
L1 7,23 3,58 0,50 0,47 1010
L2 7,25 3,53 0,49 0,46 1006
L3 8,54 3,96 0,46 0,44 1016
L4 9,24 5,26 0,57 0,53 1007
L5 9,79 5,96 0,61 0,56 1006
L6 10,75 6,40 0,60 0,55 1007
L7 11,58 5,78 0,50 0,47 1013
L8 11,82 6,91 0,58 0,54 1018
L9 11,97 6,13 0,51 0,48 1002
L10 12,02 6,71 0,56 0,52 995
L11 12,22 7,45 0,61 0,56 999
L12 12,42 5,69 0,46 0,44 1011
L13 13,19 6,34 0,48 0,46 1007
L14 13,65 7,05 0,52 0,49 1009
L15 13,75 6,41 0,47 0,44 1007
L16 17,23 8,19 0,48 0,45 1007
L17 20,12 11,34 0,56 0,53 1044
L18 27,20 14,90 0,55 0,51 1009



2018

Then, the interval estimation will be given for two cases, the 
first one (i) when the σ lnX – parameter is known, and the second 
one (ii) when the σ lnX parameter is unknown.

3.2.1. Confidence interval for mX when σ lnX is known

Because of large N in the data-sets L1,...,L18 (Table 1):

 σ lnX ≈ s lnx  (8)

So, it can be assumed that for the analysed data-sets the 
parameter σ lnX is known and for given n < N, Eq. (6) gives the 
confidence interval for mX. Fig. 6 presents the end point coordi-
nates of the confidence interval values (here denoted as w1 and 
w2) and the approximate expected values a1 and a2 as a function 
of n for the data-set L18. From fig. 6 it results, that up to ca. 
n = 250 the length w2 – w1 of the interval [w1,w2] decreases; then 
(here up to n = 1000) it is approximately constant, the half length 
of the relative confidence interval length (a possible measure of 
the estimation precision) is less than 10% – it may be of practi-
cal significance. The scatter of the confidence interval values is 
large (depending mainly of the variance of the random mean X–n).
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Fig. 6. Austenite grain size confidence interval values (w1, w2) and 
the expected values (a1, a2) as function of chord number n (L18, mX. 
x–n = 27,2 mm)

3.2.2. Confidence interval for mX when σ lnX 
are unknown

From Fig. 4 it results, that the parameter s lnx for the data-
sets L1,...,L18 is approximately constant (the average value is  
<slnx> = 0,50). With σ lnX = <slnx> = 0,50, the confidence interval 
in Eq.(6) may be written in the form

 
n

uX
n

uX nn 2
exp,

2
exp   (9)

It is the approximate confidence interval for the analysed 
medium austenite grain size data sets L1,..,L18. When for a given 
austenite grain size the parameter σ lnX is unknown and the meas-
ured grain size x–n belongs to the interval [7; 27 μm], the Eq. (9) 
may be used for the approximate mX interval estimation. In order 

to gain an impression for the approximation using Eq. (9), the 
interval estimation is made for the data sets with extreme σ lnX 
values (i.e., the data set L15 with σ lnX = 0,44 and the data set 
L11 with σ lnX = 0,56, Table 1). Fig. 7 shows the end points w1 
and w2 of the confidence interval values (and the appropriate 
expected values a1 and a2) as a function of n for the data sets 
L15 and L11 of the extreme σ lnX parameter values, i.e., 0,44 and 
0.56 respectively. One can see that the applied approximation 
is quite satisfactorily.

Finally, it is important to notice, that for the austenite of the 
analysed structural steels the mX – estimation (the point one by 
Eq. (5) and the interval one by Eq. (6)) may be reduced to the 
simple chord counting measurements made on linear sections.
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Fig. 7. Austenite grain size confidence interval values (w1, w2) and the 
expected values (a1, a2) as function of chord number n for the data-
sets: a) L15 (s lnx  = 0,44 and s lnx  = 0,50) and b) L11: s lnx  = 0,56 and 
s lnx  = 0,50); s = s lnx

4. Discussion

For the analysed structural steels, the austenite grain chord 
lengths along a test line are values of a random variable X of 
logarithmic-normal distribution. The statistical mX – parameter 
(the expected value) is the linear austenite grain size. In the first 
approximation the algebraic σ lnX – parameter is independent of 
the particular austenite microstructure; from a practical point of 
view it may be assumed to be constant, i.e., σ lnX . <s lnx> = 0,5. 
(It results from approximately constant variation coefficient vx 
of the austenite grain length of chords in the structural steels, 
also stated in [10]). Next, the sequent chord lengths along a test 
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line are approximately independent values (realizations) of the X. 
In this case, for a given number n, the arithmetic mean x–n, given 
by Eq. (4) may be expressed by Eq. (7) (simple chord counting 
method). Consequently, the logarithmic-normally distributed 
random mean X–n is an estimator for the grain size mX. The point 
estimation is given by Eq. (5). The interval estimation takes into 
account the σ lnX – parameter of the logarithmic-normal distribu-
tion. If the σ lnX – parameter is known, the grain size confidence 
interval is given by Eq.(6). If the σ lnX – parameter is unknown the 
approximate confidence interval given by Eq. (9) may be used.

Finally, it is important to notice, that the found properties 
of the prior austenite grain chords are adequate to particular 
metallurgical conditions (chemical composition, heat treatment, 
etc. [1]) only. For other metallurgical conditions the austenite 
chord length distribution follow the gamma distribution [10]. 
It seems, the decisive structural process which determines the 
austenite grain structure is a special interaction between the 
disperse phase (carbide, nitride, carbonitride) and the austenite 
grain boundaries at elevated temperature (during the austenitizing 
heat treatment) expressed by the Smith-Zener Eq. (1), [1, 11]. An 
interesting feature of the structural steels austenite chord lengths 
distribution (independent from the approximation by gamma or 
logarithmic-normal distribution) is the approximately constant 
value of the variation coefficient, vx (in the range of 0,5-0,6).

5. Concluding remarks and conclusions

1. For a random variable X of logarithmic-normal distribu-
tion an approximate confidence interval for mX is given by 
Eq. (6).

2. In the analysed low alloy structural steels, the sequent 
austenite grain chord lengths x1,x2,..., xN along a test line 
are independent values of random variable X of logarithmic-
normal distribution; so, when the parameter σ lnx is known, 
Eq. (6) may be used for the mX interval estimation.

3. For the data-sets L1,...,L18 the parameter vx and conse-
quently the parameter s lnx  are approximately constant, so 
σ lnX . <s lnx> = 0,50.

4. If the parameter σ lnX is unknown, in a first approximation 
the grain size mX interval estimation may be performed 
using Eq. (9).

5. For the structural steels, the austenite grain size mX estima-
tion may be reduced to the simple chord counting measure-
ments made on linear sections.
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