
1. Introduction

The technologically demanding process of the ADI, i.e. 
Austempered Ductile Iron,  manufacture is a good example of 
how important the accurate information about various process 
parameters really is. As described further, various parameters 
such as temperature and time in different stages of the process, 
and also the chemical composition exert a strong influence on 
the final properties of this material. When new products are 
designed, it is necessary to decide on their final properties, 
which means choice of the process parameters. Therefore, it is 
so important to have access to the experimental and literature 
data on global research using new settings and options for 
the ADI treatment, in other words - the data that will allow 
appropriate selection of process parameters to produce the 
required grades of  ADI.

2. Austempered Ductile Iron

ADI is the result of heat treatment carried out on the cast 
iron with nodular graphite. Excellent combination of properties 
obtained in ADI, including the strength, toughness and fatigue 
behavior, makes this material a successful substitute for steel 
or aluminum alloys. ADI has a high fatigue strength, higher 
than aluminum, is resistant to abrasive wear like steel, but most 
of all – its use can significantly reduce the cost of production. 
An important advantage for the automotive industry is also 
high damping capacity, as a matter of fact, by 40% better 
than that of steel [1]. Manufacturers are looking for new uses 
for this material - ADI is already present in the automotive, 
agricultural and railway stock industries [2]. ADI is generally 
recommended as a structural material because of the very 

encouraging cost of production of parts compared to the cost 
of other materials. First of all, it offers a very good castability, 
which enables complex shapes to be reproduced with higher 
yield and raw castings to have better dimensional accuracy. 
This, in turn, implies savings in machining [3].

2.1. Preparation of ADI

One of the stages in the ADI production is making the ductile 
iron with the addition of elements such as Mn, Ni, Cu, Mo, Cr, 
Sn, or with other elements allowing the formation of a pearlitic 
or pearlitic-ferritic structure and increasing the hardenability. 
The spheroidisation of cast iron consists in introducing into the 
melt appropriate amounts of magnesium, which result in the 
precipitation of graphite characterized by nodular morphology. 
The degree of refinement and the specific shape of graphite 
depend on the content of sulphur and residual magnesium, 
the latter one remaining in the alloy as one of its constituents. 
The specific behavior of this additive, i.e. its burning out in the 
liquid metal, is the reason why the structure of the resulting 
alloy has the best properties immediately upon completing 
the spheroidising treatment. Inoculation is usually carried out 
with FeSi or FeSi-based alloys. The aim of this treatment is to 
obtain more uniform distribution of graphite precipitates and 
larger number of nuclei. The chemical composition and initial 
structure of the ductile iron affect the heat treatment parameters. 
A typical course of the heat treatment consists in austenising 
at a temperature of 815-950 °C followed by austempering at a 
temperature of 230-400 °C [4]. 

Differences in the mechanical properties of specific 
ADI grades are associated with differences in the structure, 
resulting, in turn, from different heat treatment parameters. 
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Modelling of ADI properties can be achieved through control 
of parameters such as the temperature of austenitising and 
austempering. This is best reflected in the tensile strength Rm 
- to - percentage elongation A ratio. During austempering, very 
important is the temperature of the process. If the cast iron is 
austempered at a temperature above 400 °C, it can be expected 
that, due to rapid transformation, carbides will appear in the 
structure and the cast iron will lose its ductility. Austenite 
content in relation to ferrite assumes the highest level in the 
temperature range of 350 to 370 ºC, and then the cast iron has 
the highest elongation and the lowest strength [5].

If the austempering temperature is reduced even more, 
the structure will contain martensite, which is the effect 
of transformation of residual austenite precipitated during 
cooling to room temperature. Besides temperature of the 
process, structure of the cast iron also depends on the time 
of the process. Particularly important is the optimum time of 
austenitising, ensuring on the one hand suitable enrichment of 
austenite in carbon (proper time of the process), and on the 
other hand preventing the decomposition of austenite and 
carbide evolution (too long time of the process). The high 
carbon content in austenite reduces the temperature of the 
start of martensitic transformation. Austempering carried out 
for the time of approximately 3 hours can lead to enrichment 
of austenite in carbon up to 1.8 % and 2.2 %. The resulting 
structure is composed of martensite, coarse precipitates of 
ferrite and residual austenite [6]. 

2.2. Development of various scenarios for the ADI 
production 

The aim of the first stage of the work was to collect 
comparative data on the manufacturing process of ADI. 
Foundry Research Institute in Cracow has an experienced team 
of engineers conducting research on this material. Studies of 
this material are also conducted in nearly all parts of the world. 
The diversity of the experiments results in the development 

of new variants of the heat treatment, and thus in new ways 
to obtain the required properties of this material. In this work 
it was important to examine whether the data collected from 
the World Wide Web have any value for process engineer 
designing the manufacturing process of ADI. 

In the following part of this study, the ADI grades 
designated as ADI-1 up to ADI-6 will be presented. They 
represent different chemical compositions of cast iron 
subjected to the heat treatment, which involves austenitising 
and austempering (TABLE 1). To obtain a minimum fatigue 
strength of 220 MPa, two variants of the heat treatment were 
proposed for two different chemical compositions (ADI-1, 
aDI-2, a total of 4 variants) [7]. For aDI-1 (containing Cu 
and Ni), the required fatigue strength can be obtained by 
austenitising at 900 °C for 90 minutes and ausferritising at 360 
°C (variant I) or 320 °C (variant II) for 120 minutes. For ADI-
2 (unalloyed), the required fatigue strength can be obtained by 
austenitising at 900 °C for 90 minutes and ausferritising at 360 
°C (variant III) or 320 °C (variant IV) for 120 minutes. 

Another scenario is related with the heat treatment of 
samples used for the tensile strength and fracture toughness 
testing. Important parameters are: tensile strength (min. 1000 
MPa), yield strength (min. 950 MPa), fracture toughness 
(min. 50 MPa√m), and elongation. To obtain the specified 
combination of properties, two chemical compositions were 
selected (ADI-3 and ADI-4) [9], differing in the content of Cr. 
For the cast iron without chromium (ADI-3), four variants of 
the heat treatment were proposed (TABLE 1).

Studies carried out showed that ferrite grains nucleate 
at the austenite grain boundaries, which act as privileged 
sites for heterogeneous nucleation. At lower temperatures of 
ausferritising, carbon diffusion is slower, and the growth of 
ferrite retarded (nucleation of ferrite plates is more privileged 
than the growth), in this temperature austenite is less stability 
to  which is the reasons why the microstructure obtained at 
lower ausferritising temperatures (260 °C, 288 °C) contains 
more ferrite (fine-grained in this case) and lower volume of 
austenite. 

TABLE 1
Samples of variants of the ADI manufacture with breakdown into the obtained properties[8]

No.

austenitizing austempering properties

temp. 
(°C) time (s) temp. (°C) time (s)

tensile 
strength 
(MPa)

elongation 
(%)

reduction of 
area (%)

hardness 
(HRC)

yield 
strength 
(Mpa)

fracture 
toughness 
(Mpa √m)

ADI4
871 7200 260 14400 1438 1,6 0,9 48 1250 55,2

871 7200 385 7200 830 5,1 5,5 32 650 40

ADI3 871 7200 273 12600 1179 0,8 1,2 45 1137 55,2

871 7200 385 7200 848 5,1 4,1 30 595 44,1

ADI1 900 5400 320 7200 350  -  -  -  -  -

ADI2 900 5400 320 7200 290  -  -  -  -  -

ADI6
900 5400 250 3600 1520 1,8  - 58 1410  -

900 5400 425 3600 862 9,2  - 37 565  -
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Fig. 1. The tensile and yield strength of ADI-5 and ADI-6 vs 
austempering temperature – an example

Closer analysis shows that ADI ductility increases with 
austenite volume increasing in the structure, while both the 
yield strength and tensile strength are decreasing (Fig. 1). 
Fracture toughness (stress intensity factor) reaches the highest 
value for the hardness of approx. 40 HRC, i.e. when the cast 
iron contains about  60 % ferrite and 25 % austenite. So, the 
optimum value is achieved when ausferritising is carried out 
at approx. 280 °C for approx. 3.5 h. Higher temperatures 
increase the segregation areas of elements such as Si, Mo, Mn, 
and in ADI-4 also of Cr. Further variants referred to ADI-5 
[9]. The task was to develop the heat treatment regime for 
samples used in testing of mechanical properties and fracture 
toughness. Important parameters were: tensile strength (min. 
950MPa) and fracture toughness (min. 45 MPa√m). To obtain 
the specified properties, one chemical composition (TABLE 1) 
and four heat treatment variants were selected. Examining the 
effect of the ausferritising temperature on fracture toughness 
it can be noticed that with temperature increasing to approx. 
316°C, the fracture toughness initially increases and then 
decreases, while prolonged time of ausferritising increases this 
parameter.

The last scenario considered referred to ADI-6 [11]. The 
task was to develop the heat treatment regime for samples used 
in mechanical tests. Important parameters were: tensile strength 
(min. 950 MPa), elongation (min 3.5 %), and hardness (min. 
40 HRC). To obtain the specified properties, one chemical 
composition and two heat treatment variants were selected 
(TABLE 1). The results show that at lower temperatures of 
ausferritising, the yield strength, tensile strength and hardness 
are lower. The yield strength and tensile strength decrease when 
the austenite and ferrite become coarse (higher temperatures of 
ausferritising).

The data collected and the conclusions drawn can be used 
in the design of technological process, but they can equally 
well serve the task of building intelligent systems, as has 
already been demonstrated in previous works of the authors 
using rough set theory [12] and the logic of plausible reasoning 
[13] and others related with diagnostics [14] or [15].

3. ontology Driven Data Acquisition

Today, computers are becoming “smarter”, are able 
to process more information, faster draw conclusions and 
make decisions. However, the manner in which the computer 

makes decisions is based on mathematics, and specifically on 
logic. Ontology in terms of computer science is also a logic 
formalism, because knowledge consists of inference, in other 
words, rules or aggregates, i.e. interlinked information. By 
contrast, the information consists of data linked by relations.

Ontology is a kind of proxy between a human and a 
computer. The task posed to a computer is to understand 
knowledge in a manner such as it is understood by a human. 
The problem is not understanding in the sense of syntax - 
because this has already been largely achieved - but in the 
sense of semantics, i.e. in the sense of understanding the 
links between concepts expressed in natural language and 
abstract ideas. Here, the main role is played by the semantics 
of inference. Ontology in computer science is a formal record 
of the definition of a certain part of the knowledge expressed 
in the form of a taxonomy of related classes. In other words, 
ontology is a semantic model of defined field of knowledge. 
Ontologies are computerized implementation of description 
logic [16]. The description logics (DL) were used in the 
creation of ontologies for the Semantic Web, in decision support 
systems, among others, in medicine, in database applications 
(query analysis and optimization), or in applications for natural 
language processing. The main tasks of inference implemented 
in the DL are: satisfiability, subsumption, equivalence and 
separability of concepts, finding/checking membership of 
an instance in a given class, checking consistency of the 
knowledge base. Description logics are by nature best suited 
to describe the classes of objects and reasoning about objects 
belonging to different classes, thus it seems quite natural to 
attempt to apply them to define standards for ADI grades. The 
description of the model of knowledge consists of facts about 
various alloys, e.g.: 

The terminology, on the other hand, includes the definitions 
and axioms on the class hierarchy. Sample definition (for grade 
according to EN-GJS-800-8) in DL notation is as follows:

An important element of the definition is part with the 
universal quantifiers (“for all”). Its use enables checking the 
value of objects that are in different relations to the tested alloy 
(relations from the table, e.g. hasHardness). The definition 
also includes part with the existential quantifiers, which can be 
avoided if we assume that we do not have all the data. In this 
case, however, inference may be incorrect (e.g. the alloy can 
be mistakenly considered to meet the standard, even if some 
of its parameters - which are not examined - do not meet this 
standard). Additionally, in the case of numerical data, certain 
impediment occurs. In the basic version (without extensions 
that are in the study phase), Description Logics do not support 
arithmetic operations. Therefore, the numerical values used 
in the above definition are interpreted as objects of classes. 
Hence one can define the Number class and explicitly mention 
its instances (so it will be the representation of a finite subset 



2120

of the numbers). In addition, for this definition, the value of 
hasHardness should belong to an interval, and does not need 
to be a specific value. In this case it is necessary to define a 
Range1 class in the form of:

Formalism is complicated for an inexperienced designer 
and requires participation of an expert. Also the DL syntax 
lacks dedicated editors. A better solution in this case is 
modelling of the DL-based ontology in an ontology editor, e.g. 
Protege. The ontology language, more expressive and deeply 
routed in the logic, is OWL (Web Ontology Language). There 
are numerous variants of the OWL language, in which the 
selection of specific limit constructs gives specific capabilities 
and complexity of reasoning. Significant variations of OWL 
are based on Description Logic languages [16]. Modelling 
capabilities are thus similar to the DL, but tool support for 
OWL language (including the Protege editor with integrated 
inference engine and the capability of adding plug-ins) is 
much more promising. Classes, relationships and objects 
are introduced by declarations, while their specifications are 
created using the constructors known from DL (intersection, 
sum, quantifiers, etc.):

Important fact is that in the ontologies using OWL and 
RDF/S it is easier to store numerical data types. The axioms 
in the ontology, in analogy to the knowledge base stored in the 
DL, can relate to classes, relationships or objects. Using a table 
with the description of parameters of the experiments carried 
out at the Foundry Research Institute in Cracow, basic classes 
of the ontology were modelled in the Protege editor (figure 2).

Fig. 2. Fragment of ontology describing experiments and properties 
of the manufactured cast iron

The above graphic corresponds to a record in the form of 
OWL Functional Syntax included in TABLE 2.

TABLE 2
A record in the form of OWL Functional Syntax

Ontology(
Annotation(rdfs:comment “ADI Ontology”^^xsd:string) (...)
Declaration(Class(:ADI_MicrostructureDescriptionProperty))
Declaration(Class(:AssumedChemicalComposition_Parameter))
Declaration(Class(:PercentageShareOfUsedIngredients_
Parameter))
Declaration(Class(:TypeOfFurnaceUsed_Parameter)) (...)
Declaration(ObjectProperty(:hasProperty)) (...)
annotationassertion(rdfs:label “aDI_HardnessProperty(HB)”)
SubClassOf() 
AnnotationAssertion(rdfs:label “ADI_EnlongationProperty(A)”)
SubClassOf()
AnnotationAssertion(rdfs:label “ADI_Property”) (...)
annotationassertion(rdfs:label  “hasHardness”)
SubObjectPropertyOf(:hasProperty)
ObjectPropertyDomain()
ObjectPropertyRange() (...) )

3.1. multi-source-Data-linkage framework

Searching for information to select process parameters and 
support the decision-making procedure is becoming nowadays 
more and more difficult due to the dispersion of research 
centers, a variety of sources (researchers, technologists, 
magazines, books, research reports, results of experiments), 
even in a niche so small as the production of ADI. Increasingly, 
all these sources of information can be found on the World 
Wide Web, but to accomplish this it is often not enough to use 
Google.com, and even if it is, the task may turn out to  be quite 
difficult [18].

As indicated earlier, based on the literature, one can 
create a very accurate and reliable knowledge base. Semantic 
model of relationships existing between the data could reduce 
required experience of the technologist to evaluate the data 
found, and most of all – time needed. The authors propose 
the use of a genuine proprietary framework developed in the 
School of Information Technology and Electrical Engineering 
at The University of Queensland, named OGDL: Ontology 
Guided Data Linkage, which consists of the following steps 
[19]:
•	 Stage 1 - Ontology Construction: Construct an ontology 

that is capable of describing the properties of data objects 
from different application domains. 

•	 Stage 2 - Key Discovery for Data Objects:  Every data 
object represents a class of objects (facts) that has the 
same structure (set of attributes).  A key is like a primary 
key in a relational data model that can be used to uniquely 
identify the objects/samples in a data source. So we can say 
that a data source is a collection of uniquely identifiable 
objects (samples) and every object is identified by a key.

•	 Stage 3 – Key Linkage Validation for Multiple Data 
Sources. In OGDL approach we connect the keys from 
multi-source data according to the semantics defined in 
the ontology. For a given key in a data source, we check 
out its equivalent keys in ontology and then consider the 
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syntactical transformation between the key values. The 
syntactical transformation between the key values will 
qualify the link-ability of the data values such as the 
cardinality, granularity, range, unit, and scales. Sometimes 
the key equivalence may not be available. In this case, 
we need to consider the approximation between the key 
values with respect to the ontology. 
In general, data linkage can be considered based on 

techniques either deterministic or probabilistic [20]. In 
deterministic approaches, a global schema is expected to be 
available to decide the link-ability between different data 
sources. However, it is difficult to obtain a global schema 
in most cases. In probabilistic approaches it is assumed that 
the relationships between data items of different sources 
can be established via a probabilistic model where two 
data items are linkable if they satisfy certain co-existence 
relationships. OGDL approach is a hybrid of these two 
approaches. In OGDL, we firstly construct an ontology using 
ontology discovery algorithms. Then we use a multi-faceted 
classification technique for performing structural analysis on 
multi-source data. This framework supports self-organization 
of contributing data sources through the discovery of structural 
dependencies, by performing multi-level exploitation of 
ontological domain knowledge relating to tables, attributes 
and tuples from a data source. The framework thus is able to 
discover schema structures across unrelated databases, based 
on the use of direct and weighted correlations between different 
ontological concepts, using record-matching technique for 
concept clustering and cluster mapping. 

The process of mining structures existing among multiple 
databases is a significant task, with the aim to acquire the 
keys to make data items linkable. Accurate integration of 
internet available information can provide valuable insights 
that are useful for evidence-based key discovery. Traditional 
approaches use similarity scores that compare tuple values 
from different attributes, and declare it as matches if the score 
is above a certain threshold [21] or [22]. These approaches 
perform quite well when comparing similar databases with 
clean data. However, when dealing with a large amount of 
variable data, comparison of tuple values alone is not enough 
[23]. It is necessary to apply domain knowledge (expert, 
technologist) when attempting to perform data linkage 
where there are inconsistencies in the data. Furthermore, the 
creation of data linkages between heterogeneous data sources 
requires the discovery of all possible primary and foreign key 
relationships that may exist between different attribute pairs, 
on a global spectrum. 

While conducting our research, we analyzed real-world 
data collected from a variety of sources (mentioned before). 
Findings from this analysis indicate that schemas of data that 
are invariant in time hold valuable information that aid the 
identification of semantically similar objects. The objective 
is to develop an ontology structure to provide an overview of 
all data. In OGDL, we exploit hidden relationships between 
data sources towards patterns discovery at different levels of 
data abstraction, including the schema and data instance levels. 
As some chains-of-relationships have stronger correlation 
weights than others, we focus on the identification of data 
correspondences between key attributes, together with its 
semantic information flow. OGDL approach is considered 

with the relationships that link keys such as candidate, primary, 
partial, and foreign key relational data (linkage) relationships. 
The final results are further integrated into data analysis tools 
to support sensible queries to discover meaningful and accurate 
facts among data objects of multiple sources. 

There exist context-aware content mediators that for 
example allow multi-device and multi-user Web browsing 
that delivers partial view of each page to particular users.  
Content adaptation mediators operate on information as it 
flows and can add value to the information by enhancing the 
information (content is added or omitted), and/or transcoding 
it, and/or connecting various streams of information. However 
the existing approaches are quite limited in the types of 
information sources and the context information that they are 
able to use [24]. As a future extension our plan is to research 
adaptive user interfaces that provide generic mediators able 
to use any sources of information (and therefore suitable 
for a variety of applications) and also a variety of context 
information including user role, location information, and user 
preferences. The mediators need to be supported by Context 
Managers able to gather and evaluate context information and 
also appropriate meta information in the information sources. 
Such meta information (annotation, indexing) will need to be 
matched with the current context (including the role) to select 
appropriate interface adaptation and the content that it presents 
to particular users based on user preferences and their active 
roles. One of the requirements of such a mediation is that it 
is bi-directional i.e., both the request for information and the 
response are mediated. 

4. conclusions

The work presented here is a summary of the authors’ 
studies of the mechanical properties and applications of 
ADI. In terms of the interdisciplinary knowledge it also 
enables specifying the use of a modern approach to data 
integration, which is the Agile Data Integration system. 
Collecting of research data is an important step in the process 
of finding the optimum design solutions for newly made 
products - experimental data allow us properly calibrate the 
manufacturing process of ADI to let the final product achieve 
the required properties. The design process can use the research 
data collected, among others, from the Web. As indicated in 
the article, the process of data acquisition can be supported by 
the semantic technologies.  
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