
1. Introduction

Linear section of grains in material with polyhedral 
microstructure is a system of chords with random length along  
a test line, Fig.1, [1,2]. 

Fig.1. Polyhedral metal microstructure with test line and the length of 
grain chords, x1, x2, ...,  xi

The sequent chord lengths: x1, x2, ... are values 
(realizations) of random variables X1, X2, ... . For isometric 
microstructure (homogeneous and isotropic [2]) the X1, X2, ... 

are independent and have the same distribution, so it may be 
represented by a simple random variable X [3]. The so-called 
chord length distribution of X [2] has the probability density 
function (PDF) f(x) with the statistical parameters: the mean 
(expected value) X =m and variance σx2=σ2. The mean 
chord lengh (m) may be used as a measure of the linear grain 
size of the microstructure. The linear grain size estimation is 
subject of the quantitative metallography [1,4,5]. For n values 
(realizations) of X: xi (i=1, ..., n) the arithmetic mean
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i.e., the empiric grain size, is a value of the random variable 
nX  - the random mean. The nX  is characterised by the PDF 

f( nx ) and statistical parameters, the mean 
nX  and the 

variance 2
nXσ  which may be expressed by parameters of the X,

mX n = (2)

and

nnX

2
2 σσ = (3)

Depending on the PDF f(x) and the number, n, of chords, 
the nX  may by used for statistical grain size estimation. The 
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well known point estimation is rather simple. The interval 
estimation is the main subject of the present work.

Statistical studies of the austenite grain chord lengths 
in structural steels of isometric microstructure show that the 
random variable X has the gamma distribution [6], its PDF is:

(4)

where b and p are non-negative parameters (b is the scale, 
and p is the shape parameter of the PDF), and Γ is the Euler 
gamma function, [7]. (Henceforth, the symbol G(b,p) denotes 
the gamma distribution of b- and p-parameters; the symbol 
X:G(b,p) denotes the random variable X which has the G(b,p).)

The statistical parameters of the G(b,p) may be expressed 
by the b- and p- parameters, [7],

b
p = m (5)

and

.
b
p =  
2

2σ (6)

The variation coefficient, ν=σ/m is:

2
1

−
= pν (7)

If the sequent chord lengths along a test line are 
statistically independent values (realizations) of X:G(b,p), then 
the nX  has a gamma distribution too, [7], what make possible 
the grain size interval estimation.

The particular subjects of this article are: 
(i) general properties of the austenite chord length 

distributions given in [6];
(ii) statistical independence of sequent chord lengths along 

test line (the independence is a condition for the assumed 
isometric microstructure);

(iii) construction of the grain size confidence interval.

For more advanced statistical analysis of the austenite 
chord lengths in structural steels some linear transformations of 
the X:G(b,p) are required. They are presented in the Appendix. 

The studies are also supported by computer simulation 
with one dimensional (1D) models of random segments on 
a line, it lengths are independent values of the X:G(b,p).

2. Experimental

A set of 20 isometric prior austenite microstructures 
of low alloy structural steel 40Cr8 (with different contents 
of microalloying elements, V, Nb and Ti, heat treated with 
austenitizing for 30 min in argon atmosphere at temperature 
in the range of 840-1200oC and quenching in water) were 
investigated [6]. Fig.2 shows a typical microstructure of 
a steel specimen polished surface, after etching in saturated 
aqueous picric acid solution. The quantitative metallography 
was carried out by linear sections of the microstructure [1]. For 

each specimen, in the microscope field of view, on 5 random 
test lines (having minimum 10 chords and which end points 
are on the austenite grain boundaries), the length of chords 
were measured automatically using the computer image 
analysis program SigmaScan-Pro [6]. For each steel in several 
fields of view the length of N>450 chords was measured. In 
a measurement results data set the length of chords: x1,x2 =, 
..., xN are written for the particular test lines, which for the 
isometric microstructure are chosen in an arbitrary (random) 
sequence.

Fig.2. Typical microstructure of the prior austenite in a structural steel 

The statistical analysis shows (chi-square test), that 
most of the austenite grain chord length distributions 
correspond to the gamma distribution [6]. It is necessary 
to emphasize that part of investigated austenite grain 
chord length distributions correspond to log-normal size 
distributions, whilst size distributions of austenite grains of 
specimen austenitised at temperature 1200oC had irregular 
shape different from gamma and log-normal distributions. As 
an example, Fig.3 shows some empirical PDFs in comparison 
with the appropriate G(b,p) PDFs, given by Eq.(4). In Table 
1. are given the austenite chord lengths characteristics: the 
statistical parameters (the arithmetic mean, x , and standard 
deviation, s, in μm, and variation coefficient, v=s/ x , μm0), 
the empirical parameters of the G(b,p), (b- in μm-1 and p- 
dimensionless) - calculated by Eq.(5) to Eq.(7) for suitable x  
and s values, and the number of chords, N, as well. In Table 
1. the data sets (denoted: S1, ..., S20) are ordered relative to 
increasing of the x  value.

From Table 1 it results that the range of values of the 
x , s and b-parameters is relatively large (max/min>15) in 
contradiction to the ν and p-parameters (max/min<2).
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Fig. 3. Austenite grain chord length distribution (PDF f(x)) for 
data of different grain size and the approximation with gamma 
distribution PDFs

According to the equation (7), the p parameter is 
determined by the variation coefficient, v.

Fig.4 shows the empirical p values as a function of x . 
Because p only changes a little (linearly) with x , therefore 
in practice the independence of p from x  may by assumed. 
The arithmetic mean <p> - calculated for the p-values given in 
Table.1 - is, <p>=3. 

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70
x, µm

p

p, S1-S20
p=3

Fig. 4. The relationship between p-parameter and mean length x  of 
austenite grain chords for the data sets S1, ..., S20

A more detailed approach uses the relative chord length 
distribution. For X:G(b,p), the random variable

m
X = U (8)

has the one parameter G(p,p) (Appendix A2 for a=m-1 and 
Eq.(5)). The statistical parameters of the U:G(p,p) are U =1 
and σu2=p-1. 
For a given data-set,

x
xu = (9)

is the relative chord length, which may be regarded as empirical 
value (realization) of the random variable U. Fig.5 shows the 
empirical PDFs f(u) for the particular data sets (S1,...,S20) in 
comparison with the PDF f(u) of the G(<p>,<p>) for <p>=3. 
The empirical PDFs are similar each other and scatter near the 

PDF of the G(<p>,<p>). The empirical statistical parameters 
are, u ≈1 and su

2<p>-1. Fig.5 is in consistence with Fig.4. 
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Fig. 5. Relative austenite grain chord length distributions (the PDFs 
f(u)) for data sets S1,...,S20 and the PDF of U:G(<p>,<p>) for <p>=3

Consequently, for the analysed steels, the austenite grain 
chord length distributions may be approximated by the gamma 
distribution G(<p>/m,<p>) for <p>=3 and m= x

3. Independence

If the austenite sequent chord lengths along the test line: 
x1, x2, ... are independent values (realizations) of the X:G(b,p) 
(exactly, they are the values of independent random variables 
X1, X2, ... which have the same G(b,p)), then for a given n, the 
arithmetic mean nx  is a value of the nX :G(nb,np) (Appendix 
A4). Consequently, the statistical independence of the chord 
lengths may be analysed by the PDF f( nx ) of the random 
mean nX .

In a data-set for given number n (n=2,3,4,5), the are at 
most rn disjoint subsets of n elements. The arithmetic mean 
distribution of the rn subsets are characterised by the empirical 
PDF f( nx ). 

The chi-square test shows that most of the 80 empirical 
PDFs f( nx ) (the 20 data sets and the n=2,3,4,5 give 80 subsets) 
are consistent with the corresponding PDF of the G(nb,np). 

As an example Fig.6 shows the comparison of empirical 
f( nx ) functions with the corresponding gamma distribution 
functions for S6 (N=664, n=2 and n=5).
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Fig.6. Comparison of the empirical PDFs f( nx ) with the ones of the 
G(nb,np) for n=2 and n=5 (data set S6, G(0.50,3.35) 
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From the analysis of the empirical PDFs f( nx ) it results, 
that the sequent chord lengths xi (i=1, ..., N) in the data-sets (S1, 
..., S20) can be interpreted as independent values (realizations) 
of the corresponding X:G(b,p). This result is the basis for 
statistical grain size interval estimation.

4. Estimation

If the austenite sequent chord lengths along the test line 
are independent values (realizations) of X:G(b,p), then nX
:G(nb,np) and the random variable

(10)

has the G(1/2,np), i.e., Z:G(1/2,np). The G(1/2,np) is a chi-
square distribution with 2np degrees of freedom (Appendix A5). 
For given n and p, the Z:G(1/2,np), taking into consideration of 
Eq.(5), leads to the grain size confidence interval:

(11)

where the so-called critical values χ2
α/2,2np, χ2

(1-α/2),2np are 
determined by the chi-square distribution for 2np degrees of 
freedom and the given α probability (α<0.1). 

TABLE 1.
Austenite grain chord characteristics

Data set x s v b p N
μm μm μm-1

S1 4.70 2.44 0.52 0.79 3.71 654
S2 5.42 2.73 0.50 0.73 3.94 591
S3 5.72 2.93 0.51 0.67 3.81 632
S4 5.74 3.42 0.60 0.49 2.82 1265
S5 5.90 3.22 0.55 0.57 3.36 641
S6 6.68 3.65 0.55 0.50 3.35 664
S7 6.72 3.81 0.57 0.46 3.11 591
S8 6.90 4.24 0.61 0.38 2.65 622
S9 7.79 4.17 0.54 0.45 3.49 560
S10 13.32 8.19 0.61 0.20 2.65 679
S11 17.63 10.54 0.60 0.16 2.80 604
S12 23.65 14.56 0.62 0.11 2.64 557
S13 25.36 15.22 0.60 0.11 2.78 547
S14 28.76 17.03 0.59 0.10 2.85 548
S15 32.77 17.20 0.52 0.11 3.63 462
S16 34.48 19.84 0.58 0.09 3.02 472
S17 38.74 22.98 0.59 0.07 2.84 806
S18 48.92 33.79 0.69 0.04 2.10 852
S19 56.53 35.26 0.62 0.05 2.57 624
S20 64.19 39.75 0.62 0.04 2.61 561

For given n, because of the random variable nX
:G(np,np), the end points of the confidence interval, i.e., 
the 2np nX /χ2

α/2,2np and the 2np nX /χ2
(1-α/2),2np are random 

variables with the means, a1=2npm/χ2
α/2,2np and a2=2npm/

χ2
(1-α/2),2np, respectively. The algebraical variables a1, a2 as 

functions of n characterise the confidence intervals given 
by Eq.(11). These functions for the G(0.49,2.82) are shown 
in Fig.7. (For large n, the χ2-values were calculated by the 
well known Laplace function u= , [8].) For 
given n, the a2-a1 length of the [a1,a2] interval characterises 
the length of the confidence interval. Fig.7 shows that the 
a2-a1 length is a decreasing function of n (a part magnified 
2 times for n<200 is shown only). With the a2-a1 length 
may be connected the precision of the grain size interval 
estimation. In this way, if the number of measured chords, 
n, increase, the a2-a1 length decreases end the precision of 
the estimation increases.
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Fig.7. The a1,a2 variables and the length a2-a1 as functions of the n for 
the G(0.49,2.82) of S4

Because the confidence interval, Eq.(11), depends on 
the p-parametr, in the subsequent analysis two cases will 
be distinguished: (i) the p-parameter is known; and (ii) the 
p-parameter is unknown. 

4.1. The p-parameter is known

For given p, Eq.(11) represents the exact grain size, m, 
confidence interval. As an example, the confidence intervals 
for the data set S4 (p=2.82 and the largest data number, 
N=1265) were analysed. For given n and nx , the grain size 
confidence interval value (realization) is

(12)

The w1,w2 are the end points of Eq.(12) interval; w1=2np nx
/χ2

α/2,2np and w2=2np nx /χ2
(1-α/2),2np. Fig.8 shows the variables 

w1,w2 and a1,a2 as functions of the n (for 2np=1132 and 
1-α=0.95). 
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Fig.8. Comparison of the S4 grain size confidence interval value 
w1,w2 variables with the a1,a2 variables as functions of n

From Fig.8 it results, that for small n the scatter of the 
w1,w2 is quite large and with increasing of n it decreases (in 
accordance with Eq.(3)). For greater n (n>~600) the w1,w2 
slowly converge to the a1,a2. The precision measure of the 
grain size interval estimation may be connected with the half 
length, g, of a confidence interval value, i.e.,

2
12 ww

g
−

= (13)

For the S4 (Fig.8), for n>-600, the g< 0.10 m. 

The precision of analysis may be supported by computer 
simulation with the one dimensional (1D) model of S4 in 
form of random segments on a line. The segment lengths are 
independent values of the X:G(0.49,2.82). For given n, the 
model confidence interval value is characterised by the w1,w2 
points. Fig.9 shows the w1,w2 variables for three independent 
simulations and the model a1,a2 variables as functions of the n. 
Fig.9 is in accordance with Fig.8 and confirms the empirical 
conclusion above: for n> 600, the g<~0.10 m.
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Fig.9. Comparison of the simulated grain size confidence interval 
value w1,w2 variables with the a1,a2 variables as functions of n

4.2. The p-parameter is unknown

If the p-parameter is unknown, assuming p=<p>=3 the 
chord lenghts distribution has the form G(3/m,3). From Eq.(11) 
results the approximate grain size, m, confidence interval,

(14)

In order to gain an idea relative to the approximation 
of an unknown p by <p> an example is given. For the data 
sets S2 and S18 (with the extreme p-parameter values, i.e, 
for S18: p=2.10 and for S2: p=3.94) the confidence intervals 
were compared for two cases: (i) the p- parameter is known 
(an exact interval); and (ii) the p- parameter is unknown and is 
assumed p~<p>=3 (an approximate interval). 

For the data sets S2 and S18, the a1,a2 variables as 
functions of n were analysed (for m~ x , 2np and 6n degrees of 
freedom, and 1-α=0.95). In Fig.10 the functions for the exact 
and the approximate cases are shown. For S2 (Fig.10a) and 
S18 (Fig.10b) the difference between the a1,a2 variables as 
functions of n for p and <p>, respectively, is not large. So, 
the difference between the approximate confidence interval 
and the exact one is not large too. Consequently, when the 
p-parameter is not known, by using p~<p>=3 it is possible to 
determine an approximate grain size confidence interval.
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Fig.10. Comparison of the a1,a2 variables as functions of n for the 
exact and approximative grain size confidence intervals (data sets: S2 
(Fig.10a), S18 (Fig.10b))

4.3. The chord counting method

In metallography, the chord lengths measurement may be 
reduced to simple counting measurements of n chords (or it 
end points) along a test line of length L - the so-called chord 
counting method [1,4,5]. Two cases will be distinguished: 



2468

(i) the test line length L is equal the total length of chords, 
L=x1+x2+, ..., +xn, the n and the L should be measured; (ii) 
for given random test line length, L, the n are to be determined 
be counting measurements (n=nw+1 where nw are chords in 
the test line). The chosen test line length, L, should ensure 
a sufficient number of chords, n, to secure the precision of the 
grain size interval estimation (e.g., g<0.10m). 

Now, the arithmetic mean length nx  may be written,

n
Lxn = (15)

The Eq.(15) may be used for the determination of the grain 
size, m, confidence interval values if the p- or <p>- parameter 
are given.

5. Discussion and conclusions

For the analysed steels, the austenite grain chord lengths 
along a test line are the values of X:G(b,p). In the first 
approximation the p-parameter is independent of the particular 
austenite microstructure; it may be assumed to be constant, 
i.e., p~<p>=3. The chord lengths distribution has the form: 
G(3/m,3), which is the main statistical property of austenite 
grain structure. From the metallurgical point of view, it seems to 
be determined by special interaction between the disperse phase 
(carbide, nitride,...) and the austenite grain boundaries at elevated 
temperature (during the austenitizing heat treatment), [9]. The 
sequent chord lengths along a test line may be interpreted as 
independent values (realizations) of the X:G(b,p). The expected 
value of X, i.e., the mean m, is a measure of the linear grain 
size. For a given number n, the arithmetic mean of the chord 
lengths, nx , is a value of the random mean nX :G(nb,np) - 
an estimator which may be used for the grain size, m, interval 
estimation. The grain size interval estimation takes into account 
the p-parameter of the G(b,p). If the p-parameter is known, the 
exact grain size confidence interval is given by Eq.(11). The 
confidence interval a2-a1 length is a decreasing function of 
the n and may be connected with the estimation precision. In 
particular, the half length, g, (Eq.(13)) of a confidence interval 
value may be used as measure of the estimation precision. If 
for the austenite grain size interval estimation of a structural 
steel the p-parameter is unknown, one may assume p~<p>=3 
and use the approximate confidence interval given by Eq.(14). 
In this case, if the nx  is expressed by Eq.(15) the interval m- 
estimation by the simple chord counting method is possible.

Finally, it is important to notice, that the found properties 
of the austenite grain chords are adequate to particular 
metallurgical conditions (chemical composition, heat 
treatment, etc. [6]) only. For other metallurgical conditions 
the austenite chord length distribution follow the logarithmic-
normal distribution [6, 10-13]. 

5.1. Conclusions

•	 In the analysed low alloy structural steels, the sequent 
austenite grain chord lengths x1,x2, ... along a test line are 
values of the X:G(b,p).

•	 The data-sets S1, ..., S20 are characterised by quite 
different b- parameters, however the p- parameters 
are in the first approximation constant, i.e., p~<p>=3. 
Consequently, the austenite grain chord lengths 
distribution is approximately of the form G(3/m,3), where 
m is the linear grain size. 

•	 For given n number of austenite chord lengths along 
the test line, the arithmetic mean nx  is a value of nX
:G(nb,np).

•	 Along a test line, the sequent austenite chord lengths are 
statistically independent.

•	 The random variable 2nb nX  has a chi-square distribution, 
which enables the grain size, m, interval estimation by the 
Eq.(11) or Eq.(14).

•	 For n>600, the half length, g, of the grain size confidence 
interval value (a measure of the grain size estimation 
precision) is less than 0.10m (10% of m). 

•	 The grain size interval estimation is also possible using 
the simple chord counting method.

6. Appendix

The distribution of a random variable may be characterized 
by the characteristic function (CHF). On the basis of a given 
CHF some conclusions according to the distribution may be 
made, [7]. In the Appendix are presented (the parts A1,...,A5) 
the CHFs of gamma distributions for random variables which 
are linear transformations of the X:G(b,p).

A1. The X:G(b,p) has the CHF

(16)

A2. The random variable

(17)
has the CHF

(18)

it is the CHF of the Y:G(b/a,p).

A3. For n independent random variables Xi:G(bi,pi) and 
numbers ai>0, i=1, ..., n; the random variable

(19)

has the CHF

(20)

A4. A special case of A3. If the Xi have the same distribution, 
i.e., Xi:G(b,p) and ai=1/n, the random arithmetic mean 

(21)
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has the CHF

(22)

it is the CHF of the G(nb,np). 

A5. The random variable is:

(23)

If in Eq.(17), one substitutes the a by 2nb and the X by nX , 
then the Y is equal to Z which CHF is

(24)

it is the CHF of the G(1/2,np). The G(1/2,np)) may be interpreted 
as chi-square distribution with 2np degrees of freedom. 
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