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THE USE OF WEIBULL STATISTICS TO QUANTIFY PROPERTY VARIABILITY IN Fe-3Mn-0.8C SINTER-HARDENED
STRUCTURALLY INHOMOGENEOUS STEELS

ZASTOSOWANIE STATYSTYKI WEIBULLA DO ILOŚCIOWEGO OPISU ZMIENNOŚCI WŁASNOŚCI STRUKTURALNIE
NIEJEDNORODNEJ STALI Fe-3Mn-0.8C WYTWORZONEJ TECHNIKĄ SINTER-HARDENING

Low carbon ferro-manganese and graphite powders were admixed to Höganäs sponge, NC100.24, and water atomised,
ABC 100.30 and ASC 100.29, iron powders – to produce three variants of sintered Fe-3Mn-0.8C steel. These were pressed
into tensile and bend specimens at 660 MPa, sintered in semi-closed containers for 1 hour in dry nitrogen or hydrogen at
1120 or 1250◦C and cooled at 64◦C/min. Both tensile strength and transverse rupture strength were examined using Weibull
statistics. This paper presents the results of a study to develop and evaluate goodness of fit tests for the two- and three-parameter
Weibull distributions. The study was initiated because of discrepancies in published critical values for two-parameter Weibull
distribution goodness of fit tests and the lack of general three-parameter Weibull distribution goodness of fit tests for properties
of PM steels.
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Aby uzyskać trzy warianty spiekanej stali Fe-3Mn-0.8C wytworzono mieszanki proszków: niskowęglowego żelazoman-
ganu, grafitu oraz proszków żelaza firmy Höganäs: gąbczastego – NC100.24 i rozpylanych – ABC 100.30 oraz ASC 100.29. Z
proszków tych zostały sprasowane, przy ciśnieniu 660MPa, kształtki próbek wytrzymałościowych przeznaczonych do wykonania
prób rozciągania i zginania, spieczone następnie w półhermetycznych pojemnikach, w czasie 1 godziny, w suchym azocie lub
wodorze, w temperaturze 1120 lub 1250◦C, po czym chłodzone z szybkością 64◦C/min. Zbadano wytrzymałość na rozciąganie
i zginanie otrzymanych próbek przy zastosowaniu statystyki Weibulla. W artykule zaprezentowano wyniki badań mających na
celu wykorzystanie i ocenę testów zgodności dla dwu- i trzyparametrowych rozkładów Weibulla. Badania podjęto z powodu
rozbieżności publikowanych krytycznych wartości testów zgodności dla dwuparametrowego rozkładu Weibulla oraz ogólnego
braku testów zgodności dla trzyparametrowego rozkładu Weibulla, w odniesieniu do własności stali wytworzonych techniką
metalurgii proszków.

1. Background and Introduction

Increased iron powder compressibility, resulting in high-
er green and sintered densities of identically processed pow-
der metallurgy (PM) steels of the same chemical composition,
generally results in better mechanical properties. This is ex-
emplified in numerous reports, including manufacturers’ data
sheets for Höganäs powders used in this investigation. These
data should be contrasted with results on sinter-hardened man-
ganese steels, for which higher strengths and ductilities have
been reported to result from the use of iron sponge, to which
ferro-manganese and graphite were added [1]. Accordingly it
was decided to reinvestigate this “anomalous” behaviour of
PM manganese-containing steels, paying particular attention
to the role of manganese vapour in sintering, especially when
using semi-closed containers and flowing atmosphere [2].

The mechanical strength of sintered steels has always
been an important issue in PM. When analyzing PM steels

mechanical strength data, our goal is simple: we wish to make
the strongest possible conclusion from limited amounts of da-
ta. To do this, we need to overcome two problems:
a) important differences can be obscured by material prop-

erties scatter;
b) differences can be obscured by experimental imprecision.

This makes it hard to distinguish real differences from
random variability [3, 4].

Scientists care about small differences and are faced with
large amounts of variability. Statistical methods are necessary.
Standardized tests are performed to determine the various
types of strength, for example tensile or transverse rupture
strength. Statistical analyses are most useful when we are look-
ing for differences that are small compared to experimental
imprecision and scatter of property. Our natural inclination
(especially with our own data) is to conclude that differences
are real, and to minimize the contribution of random vari-
ability. Statistical rigor prevents us from making this mistake.
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Transverse rupture strength (TRS) and ultimate tensile strength
(UTS) of PM sinter-hardened manganese steels typically show
scatter that is assumed to be caused by flaws (pores, inclusions
and other microstructural imperfections) and a Weibull distri-
bution can be used to model the variation [5, 6, 7].

Weibull distribution is usually used to describe the me-
chanical properties of brittle materials. Mechanical proper-
ties’ data for wrought metals and alloys is most often fitted to
a Gaussian distribution, and subsequently represented by the
mean and standard deviation. While the Gaussian distribution
is often taken as the accepted statistical distribution for failure
strength of structural low-alloy steels, there is no theoretical or
experimental justification for this situation, because Gaussian
distributions have tails that reach to infinite values, inconsis-
tent with the behaviour of most metals [8, 9]. The Weibull
cumulative distribution is sigmoidal like a Gaussian distribu-
tion, but is skewed. Use of the Weibull distribution provides
accurate failure analysis and risk predictions with extremely
small samples using simple and useful graphical plots [7]. So-
lutions are possible at the earliest stage of a problem without
the requirement to “crash a few more”. Small samples also
allow cost-effective component testing [10].

Two-parameter (2-p) and three-parameter (3-p) Weibull
distributions are occasionally used to represent the strength
distribution of PM structural parts and engineering-designed
sintered steels subassemblies. In its 3-p form, the cumulative
probability of failure of a material subjected to a stress σ can
be represented as:

P f = 1 − Ps = 1 − exp
[
−

(
σ − σu

σr

)m]
for σ > σu

and P f = 0 for σ<σu,

(1)

where:
P f is the failure probability – cumulative distribution

function (cdf ), Ps, the survival probability, σ, the failure
stress, σr , a material parameter, m, the Weibull modulus and
σu is the threshold stress below which the failure probability
is zero.

The 3-p Weibull distribution converts failure data by tak-
ing (σ i −σu) of each point and plotting the transformed data.
This distribution can be expressed also in the form:

P f = 1 − Ps = 1 − exp
[
−

(
σ − σu

σ0 − σu

)m]
for σ > σu

and P f = 0 for σ<σu,

(2)

where:
σ0 − σu = σr =

E − σu

Γ(1 − 1/m)
(3)

and Γ is the Euler gamma function [10], σ0, a characteristic
stress at which a fraction 1/e of specimens survives and E is
the expected value of the distribution function.

With respect to the 3-p form, it is necessary to select a
threshold stress that represents minimum failure strength for a
given alloy. This was considered e. g. by Newkirk and Thakur
for PM parts [11] and Biery et. al. for cast TiAl alloys [12].
The former authors used statistical procedures to assign the
threshold stress value, whilst the latter took it to be the 0.2%
offset yield strength. For less ductile PM steels this can be
insufficiently conservative.

If the threshold stress σu is taken to be zero (the most
conservative Weibull analysis and the conventional procedure
for ceramic, fibrous and composite materials), the analysis be-
comes the well-established 2-p form, where, for uniaxially and
uniformly stressed tensile specimen, the failure probability is:

P f = 1 − exp
[
−

(
σ

σ0

)m]
for σ>0 and P f = 0 for σ 6 0. (4)

The threshold value could be used to provide a minimum prop-
erty for the design of PM parts and would allow also a transfer
of strength data of laboratory tensile or bend specimens to
components, where the stress distribution is much more com-
plex. As sintered steel construction practices in the EU and
US are revised from deterministic to reliability-based design
procedures, assessing the goodness of fit of these Weibull dis-
tributional forms becomes increasingly important. Goodness
of fit tests for the two-parameter Weibull distributions have re-
ceived considerable attention. Despite this extensive literature,
we encountered difficulties when we studied the goodness of fit
of two- and three-parameter Weibull distributions to numerous
data sets consisting of 30 to 100 observations of various PM
steels’ strength properties. For the 3-p Weibull tests, critical
values are not published for the sample sizes involved, and
it is not clear how estimated shape parameters would affect
the critical values derived by assuming a known shape para-
meter. For the 2-p Weibull tests, these difficulties included a
lack of published critical values for PM steels sample sizes
larger than 30 and some apparent inconsistencies in published
critical values.

The 2-p Weibull distribution is adequate for a majority of
Weibull analysis scenarios. However, if the transformed failure
data plot has a curved rather than a straight line appearance,
or if Weibull modulus is found to be greater than 6.0, then a
third parameter may be needed to adequately model the data.
The third parameter effectively shifts the entire distribution
to the right. In practice, this can be interpreted as the lowest
possible stress at which failure may occur. Of course, it may
never be larger than the value of the lowest failure stress from
the data set. Articles [13] and [14] provides guidance on fitting
a three-parameter Weibull model.

In this paper we develop extensive and definitive 2-p and
3-p Weibull distribution goodness of fit critical values for
Anderson-Darling (A-D) statistic to yield a smoothed estimate
of the critical values for the statistics, and extend this statistics
for use.

2. Experimental materials and procedure

Höganäs sponge, NC100.24, and water atomised ABC
100.30 and ASC 100.29 iron powders were the starting ma-
terials in this investigation. Typically 0.8% of carbon was in-
troduced as fine Höganäs CU-F graphite and 3% of man-
ganese as Elkem low carbon ferro-manganese of weight %
composition 80Mn-1.3C-0.2O-balance Fe. Double-cone mix-
ing and die compaction of 120 ISO 2740 dog bone specimens
at 660 MPa, using die lubrication, were followed by sintering
in a semi-closed stainless steel container in a horizontal lab-
oratory furnace. The dew point of the sintering atmospheres,
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hydrogen or nitrogen, was –60◦C (15 ppm moisture). Com-
pacts were heated to the sintering temperature at a rate of
75◦C/min, held at 1120 or 1250◦C for 60 minutes and cooled,
in the temperature range of 1100-500◦C, at approximately
64◦C/min. After sintering all the specimens were tempered
at 200◦C. Standard PN-EN ISO 2740 tensile specimens were
tested for the ultimate tensile strength (UTS) on an MTS 810
servo-hydraulic machine at a strain rate of 5×10−4s −1. The
yield strength was measured at the 0.2% offset strain. The
same specimen types were tested in three-point bending to
determine the apparent rupture strength, TRS, for specimens
of beam depth t = 6 mm and width w = 6 mm, using span
length l of 28.6 mm. A plasticity correction was made to
calculate the bend strength [7].

Chemical analyses for oxygen and carbon in the iron start-
ing powders and in the sintered alloys, also for nitrogen, were
carried out on Leco apparatus, TC-336 and CS-125, respec-
tively. For all iron powders these were ∼0.2% O and ∼0.01%
C. An aim of the investigation was to attain in all sintered al-
loys C∼0.6%. Metallographic and fractographic examinations
were finally carried out, but this is not the subject matter of
this paper.

3. Results

Within the (small) experimental error, the densities of
Fe-Mn-C compacts remained unchanged on sintering. For
ABC 100.30 based steel it was ∼7.1 g/cm3. >0.2 g/cm3 larger
than for the sponge-based alloy, Table 1, which also lists the
results of the C and N analyses of sintered samples. Carbon
content was generally near 0.6%; but in the specimens sintered
at 1120◦C in nitrogen, however, carbon content was ∼0.7%.

3.1. Mechanical properties

The values of UTS and TRS were determined for at least
15 specimens of each batch. Using the assumption of a normal
distribution allows a mean and standard deviation of a random
variable to be determined (Table 2).

The standard deviation is a “natural” measure of statis-
tical dispersion if the centre of the data is measured about
the mean. However, if the distribution of failure loads fits
a Weibull distribution, it is different from that predicted by a
Gaussian distribution, so there is no proper standard deviation.

TABLE 1
Densities, carbon and nitrogen contents after sintering of Fe-3Mn-0.6C steel

Sintering
Carbon and nitrogen contents in % and sintered density in g/cc

NC 100.24 ABC 100.30 ASC100.29
Carbon
content,
wt. %

Nitrogen
content,
wt. %

Sintered
density gcm−1

Carbon
content
wt. %

Sintered
density gcm−1

Carbon
content
wt. %

Sintered
density
gcm−1

1120◦C, H2 0.62
0.0036
±0.0001

6.89
±0.03 0.59

7.11
±0.02 0.63

6.93
±0.02

1120◦C, N2 0.72
0.0332
±0.005

6.91
±0.02 0.71

7.09
±0.06 0.70

6.94
±0.01

1250◦C, H2 0.52
0.0032
±0.0005

6.91
±0.03 0.54

7.09
±0.04 0.54

6.93
±0.03

1250◦C, N2 0.57
0.0324
±0.001

6.91
±0.01 0.59

7.09
±0.04 0.58

6.92
±0.02

± – standard deviation measured on 15 samples.

TABLE 2
UTS and TRS of Fe-3Mn-0.8C steel

Sintering
Stress in MPa

NC 100.24 ABC 100.30 ASC100.29

UTS TRS UTS TRS UTS TRS

1120◦C, H2 551±52 1120±138 524±74 1073±111 475±39 959±141

1120◦C, N2 683±50 1357±113 603±74 1128±89 565±38 1057±152

1250◦C, H2 713±68 1337±150 650±76 1250±196 578±64 996±93

1250◦C, N2 732±53 1354±121 651±67 1244±184 626±45 1109±134

± – standard deviation measured on 15-26 samples.
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Fracture stress, also known as fracture strength, is
the minimum tensile stress that will cause fracture. It is
well-recognized that the value TRS can exceed that of UTS,
of the same PM material, identically processed, by a factor
up to ∼2, although both these parameters relate to the tensile
stress causing fracture [8].

4. Parameters estimation

There are number methods for determination of Weibull
parameters from mechanical strength measurements, Zanakis
[15] documents 17 different methods of obtaining the parame-
ters of the 3-p Weibull distributiom, but only two are in com-
mon use. Two common parameters estimation methods used
in engineering are the least-squares linear regression (LR) and
maximum likelihood method (MLE), which are the methods
considered in this paper.

The threshold value was calculated using maximum like-
lihood estimation (MLE). For known experimental failure data
σi (i = 1, 2. . . . N). the parameters σu, σr and m were deter-
mined by maximisation of the likelihood probability density
function:

L =
N
Π
i=1

f (σi;σu;σr ;m) (5)

This method requires solving the three simultaneous equations.
For calculation of the σu,σr and m from the 3-p Weibull dis-
tribution following equations were used:

Nσm
0 −

N∑

i=1

(σi − σu)m = 0 (6)

N
m
−

N∑

i=1

[(
σi − σu

σr

)m
ln

(
σi − σu

σr

)]
−

N∑

i=1

ln
(
σi − σu

σr

)
= 0 (7)

(
1 − 1

m

)
σm

r

N∑

i=1

1
σi − σu

−
N∑

i=1

(σi − σu)m−1 = 0 (8)

Equations (6-8) were solved for m with an iterative
Newton-Rhapson method. Estimation of the Weibull parame-
ters was performed under the constraints that estimators m >1
and 0<σu <min {σi ....σN }. The second condition stems from
the observation that, within the setting of the theory, a failure
stress smaller than σu is absolutely impossible.

The maximum likelihood principle for parameter estima-
tion is intuitively appealing, but for small sample sizes it has
been shown that the MLE method gives a biased estimate
of the Weibull modulus [15]. No information is available
about the bias of the MLE estimates of the parameters of
the Weibull distribution, describing the strength of PM steels.
However, assuming that known results about the bias of the
three-parameter Weibull distribution also apply to the present
study, the reference value is expected to be biased only slightly,
and the Weibull modulus m is underestimated.

For the sake of completeness, use will also be made of the
less complex 2-p Weibull analysis. For uniaxially and uniform-
ly stressed tensile specimen the failure probability is given by
the Eq. (4).

Although the parameters for the 2-p Weibull distribution
could be determined using a least-squares fit with a weight

function on the linearized Weibull equation (linear regression
– LR), the MLE method is generally used. This method for
the best estimate of parameters σo and m shows the smallest
coefficients of variation (the ratio of the standard deviation
and mean of a random quantity). The maximum likelihood
method was used to determine parameters for the 2-p Weibull
distribution setting σu =0 and only using two equations. This
method finds values of m and σo and predicts with the highest
probability the measured distribution of strengths. Although
this approach has the advantage that it gives the minimum es-
timation error when the highest and lowest values of strength
completely predominate in the analysis, it can lead to seri-
ous errors in m values. Since abnormal low or high values
of strength can easily arise in concentrations in grips, local
friction in bending tests, etc., this represent a serious draw-
back. The likelihood of a given probability density function

is defined as L =
N
Π
i=1

f (σi;σ0;m) and thus its log-likelihood

function is ln L =
N∑

i=1
f (σi;σ0;m), where N is the number

of strength experiments (specimens). Thus, estimates of these
parameters can be found by maximising the log-likelihood
function. For the 2-p Weibull distribution, the equation for
determining m from N measured strengths σi is:

N∑
i=1
σm

i lnσi

N∑
i=1
σm

i

=
1
m

+
1
N

N∑

i−1
lnσi (9)

where m can be obtained by an iterative procedure. and then
σ0 is calculated by

σm
0 =

1
N

N∑

i=1

σm
i (10)

The second method of estimating the parameters of the
Weibull 2-p distribution that be of use is LR. For a constant
tested volume (specimen size and gauge length) it is often cal-
culated using a LR with a weight function on the linearized
Weibull equation:

ln(ln(1/1 − P f )) = mlnσ − mlnσo = ln(ln(1/Ps)) = mlnσ − k
(11)

The Weibull modulus can be determined by plotting
ln(ln(1/1-P f )) against ln σ. It can be obtained directly from
the slope term in Eq. (11), and scale parameter can be de-
ducted from the intercept term. Since the true value of P f

for each σi is not known, a prescribed probability estimator
has to be used as the Pi-value, where Pi is the probability of
failure for the ith-ranked stress datum. The probability esti-
mator has significant effect on the estimation precision of the
Weibull parameters in the LR method. Several expressions are
applied to define the probability estimator. The relative merits
of these estimators have been investigated by several authors
with actual computer-generated strength data [16, 17]. It has
been shown that the optimal probability estimator determined
varies with the sample size. It has been shown also that the
MLE method results in the highest precision of estimation
with a lower safety than the LR [18]. In this study the sur-
vival probability, Ps, and failure probability, P f , were estimat-
ed by Bernard’s formula: Ps = 1- P f = 1-[(i-0.3)/(N+0.4)] =
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(N − i+0.7)/(N+0.4) where n is the total number of specimens
and i is the rank number. We use Bernard’s median rank be-
cause it shows the best performance and it is the most widely
used to estimate the probability of failure. The weight func-
tion used was wi = [(1 - P f ) ln(1- P f )]2. In statistics, there are
many methods of measuring goodness to fit, but some authors
prefer the simple correlation coefficient. It is ideal for testing
the goodness of fit to a straight line. The Pearson’s correlation
coefficient – R is intended to measure the strength of a linear
relationship between two variables of the Weibull plot. As
Weibull plots always have positive slopes, they will always
have positive R [7, 8]. Whatever the bias of the estimates may
be, the plots of the estimated failure probability of the UTS
and TRS specimens fitted the experimental data quite well,
e.g. Fig. 1.

Fig. 1. 2-p Weibull plots; m (given by slope), R2 (Pearson’s correla-
tion coefficient), and σ0 1211 MPa (1250◦C) and 1002 MPa (1120◦C)
were obtained using regression tool and Bernard’s formula: Ps = 1-
P f = 1-[(i-0.3)/(n+0.4)] = (n − i+0.7)/(n+0.4)

The value of Weibull modulus, which can be calculated
from a test group of specimens, enables the ‘dependability’ of
a material to be evaluated numerically. Discontinuities present
in the Weibull graphs are expected to be linked to different
defect populations.

Description of data sets parameters for 2-p and 3-p
Weibull are given in Table 3.

5. Goodness of fit

The goodness of fit of a statistical model describes
how well it fits a set of observations. Many methods.
such as the Kolgomorov-Smirnov (K-S), Chi-square, the
Anderson-Darling (A-D) tests, exist for determining the good-
ness to fit of a probability distribution to a set of data. Mea-
sures of goodness of fit typically summarize the discrepancy
between observed values and the values expected under the
model in question.

The A-D test was used to test the hypothesis that a ran-
dom sample X1,.. Xi ...XN , with strength empirical distribution
Fn(σ), comes from a continuous population with distribution
function F(σ) where F(σ) = F0(σ) for some completely spec-
ified distribution function F0(σ). The A-D test was chosen for
this study as it is more sensitive to the tail behaviour [19] and

has been recommended for statistical analysis of strength of
materials. The sensitivity to the tail behaviour is particularly
useful in structural engineering applications, where the tail is
important in computing the mechanical reliability [20, 21].
If a sample of data came from a population with a specific
distribution, typically the A-D test is used. It is a modification
of the K-S test and gives more weight to the tails than does
the K-S test.

The A-D statistic ( A2
n) is defined as:

A2
N = N

+∞∫

−∞

[F̃N (σ) − F0(σ)]2

F0(σ)[1 − F0(σ)]
dF0(σ) (12)

where F̃N (σ) is a step function that jumps at the order statis-
tics of σ, andF̃0(σ) is the hypothesized continuous cdf. The
A-D statistic is a measure of the square of the error between
the data and the hypothesized distribution weighed so that the
tails of the data are more important that the central portion.

In this and study we develop calculations using the A-D
test for testing the 2-p and 3-p Weibull assumption. The A-D
goodness to fit test for normality [18] has the functional form:

A2
N =

N∑

i=1

[
1 − 2i

N
{ln[F0(σ(i))] + ln[1 − F0(σN+1−i))]

]
− N

(13)
where F0 is the assumed (Weibull) distribution with the as-
sumed or sample estimated parameters. σ(i) is the i-th sorted,
standardized, sample value (the i−th order statistic of the data
set; ”N” is the sample size and subscript ”i” runs from 1 to
N .

For the Weibull distribution, an observed significance lev-
el (OSL) is obtained as follows [20]:

OSL =
1

1 + exp[−0.10 + 1.24 ln AD∗ + 4.48AD∗]
(14)

in which

AD∗ =

[
1 +

0.2
N

]
A2

N (15)

The OSL is the probability of obtaining a value of the test
statistic at least as large as that obtained from the data if the
hypothesis that the data are actually from the distribution being
tested is true. Typically, a 5% significance level is used. The
convention is to argue that any event or observation, whose
likelihood of happening by chance alone is less than five times
in 100 is statistically significant. This is expressed as a prob-
ability of 0.05 or as a percentage value of 5%. So, for any
experiment we perform or observation study we carry out, if
the probability of an observed event falls below the 5% sig-
nificance level, we can argue a statistically significant effect.
The null hypothesis, that the true distribution is F0 with the
assumed parameters, is only rejected if the OSL is less than
0.05 for sample size n.

The OSL was obtained for each of the distributions for
each data set. P-values and likelihood ratio test (LRT) results
were obtained also for each of the distributions for each data
set. The results are shown in Table 3.
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TABLE 3
Description of data sets parameters for 2-p and 3-p Weibull distributions, P-values, OSL using the Anderson-Darling test and LRT

No Set of specimens
Number
of spec.

2-p Weibull 3-p Weibull
LRT

m σ0,
MPa A-D P-v (A-D) OSL m σr, MPa σu, MPa A-D P-v (A-D) OSL

1 UTS ABC 1120 H2 15 6.98 556 0.838 0.025 0.024* 2.60 200 345 0.561 0.125 0.131 0.087

2 TRS ABC 1120 H2 29 12.25 1120 0.142 >0.250 0.860 3.93 422 975 0.518 >0.500 0.177 0.761

3 UTS ABC 1120 N2 15 9.12 636 0.582 0.123 0.116 2.00 156 465 0.370 0.446 0.384 0.128

4 TRS ABC 1120 N2 27 12.83 1059 0.361 >0.250 0.410 2.85 254 793 0.213 >0.500 0.727 0.14

5 UTS ABC 1250 H2 15 10.72 683 0.494 0.208 0.195 9.48 607 76 0.501 0.129 0.188 0.931

6 TRS ABC 1250 H2 25 6.74 1222 0.348 >0.250 0.435 3.02 582 622 0.328 0.478 0.476 0.343

7 UTS ABC 1250 N2 15 12.11 680 0.467 0.234 0.228 9.43 533 146 0.480 0.147 0.212 0.895

8 TRS ABC 1250 N2 29 8.12 1322 0.540 0.171 0.156 5.07 853 462 0.516 0.128 0.179 0.719

9 UTS ASC 1120 H2 14 13.60 493 0.286 >0.250 0.559 4.00 149 340 0.251 >0.500 0.638 0.365

10 TRS ASC 1120 H2 22 7.34 1020 0.396 >0.250 0.342 1.39 228 750 0.679 0.082 0.066 0.029**

11 UTS ASC 1120 N2 15 17.17 583 0.654 0.079 0.075 1.67 69 503 0.575 0.142 0.121 0.122

12 TRS ASC 1120 N2 24 6.85 1124 1.173 <0.010 0.004* 1.96 316 776 0.536 0.18 0.158 0.006**

13 UTS ASC 1250 H2 15 10.22 607 0.435 >0.250 0.273 2.28 150 445 0.345 0.477 0.433 0.21

14 TRS ASC 1250 H2 22 11.92 1037 0.307 >0.250 0.520 4.46 395 635 0.211 >0.500 0.729 0.299

15 UTS ASC 1250 N2 14 17.44 646 0.241 0.02 0.660 2.00 93 543 0.269 0.037 0.597 0.507

16 TRS ASC 1250 N2 20 8.70 1181 0.333 >0.250 0.463 2.18 313 843 0.168 >0.500 0.813 0.065

17 UTS NC 1120 H2 14 13.27 574 0.241 >0.250 0.660 6.59 294 278 0.269 >0.500 0.597 0.797

18 TRS NC 1120 H2 20 8.70 1181 0.333 >0.250 0.463 2.18 313 843 0.168 >0.500 0.813 0.065

19 UTS NC 1120 N2 15 26.91 698 0.158 >0.250 0.829 8.13 217 480 0.177 >0.500 0.794 0.71

20 TRS NC 1120 N2 15 13.43 1407 0.536 0.168 0.153 3.92 421 976 0.498 0.152 0.191 0.317

21 UTS NC 1250 H2 15 12.12 743 0.273 >0.250 0.589 2.61 176 557 0.287 >0.500 0.558 0.288

22 TRS NC 1250 H2 23 9.69 1404 0.401 >0.250 0.334 2.36 366 1013 0.243 >0.500 0.661 0.082

23 UTS NC 1250 N2 15 15.85 756 0.373 >0.250 0.378 2.16 118 628 0.322 >0.500 0.481 0.199

24 TRS NC 1250 N2 26 10.64 1300 0.561 0.149 0.137 2.47 309 971 0.340 0.474 0.452 0.036**

* – OSL<0.05 2-p; the 2-p Weibull distribution does not provide a reasonable fit.
** – LRT<0.05 (the significance level = 0.05); it is recommended that the 3-p Weibull be used to characterise PM steel properties.

The P-value is a probability, with a value ranging from
zero to one. It is the answer to this question: if the popula-
tions really have the same mean overall, what is the proba-
bility that random sampling would lead to a difference be-
tween sample means as large (or larger) than we observed?
P-value is “the probability, if the test statistic really were
distributed as it would be under the null hypothesis, of ob-
serving a test statistic (,..) the one actually observed” [19].
The smaller the P-value, the more strongly the test rejects the
null hypothesis, that is, the hypothesis being tested. Intuitively,
we think that P-value=0.0001 is more statistically significant
than P-value=0.04. Using strict definitions, this is not correct.
Once we have set a threshold P-value for statistical signifi-
cance, every result is either statistically significant or is not
statistically significant.

6. Evaluation of the results and discussion

The 2-p Weibull distribution cannot be rejected at the
5% significance (OSL>0.05) in 22 out the 24 cases. The 3-p
Weibull distribution cannot be rejected at conventional sig-
nificance level 0.05 in any case (Table 3). The average OSL
for 2-p Weibull distribution was 0.369, with the average OSL
for the 3-p Weibull distribution being 0.441. Although strictly
speaking the OSL cannot be used for ranking distributions,
higher values of the OSL do indicate a higher significance
level. Therefore it appears that the 3-p Weibull distribution is
slightly preferable to the 2-p, though the 2-p Weibull distrib-
ution cannot be rejected in most cases.

However, the likelihood ratio test is >0.05 in 21 out the
24 cases. LRT was a statistical test used to compare the fit
of two models, one of which (the 2-p Weibull model) is a
special case of the other (the 3-p Weibull). The test is based
on the likelihood ratio, which expresses how many times more
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likely the data are under one model than the other. This like-
lihood ratio, or equivalently its logarithm, can then be used to
compute a P-value, or compared to a critical value to decide
whether to reject the null model in favour of the alternative
model. The likelihood ratio test rejects the null hypothesis if
the value of this statistic is too small. How small is too small
depends on the significance level of the test. When LRT >0.05
(the significance level = 0.05) it is recommended that the 2-p
Weibull be used to characterise PM steel properties.

The objectives of this paper are to present the feasibil-
ity of utilizing the Weibull distribution to predict the man-
ganese steel strength performance from laboratory test results.
Further, the proposed approach for uniaxial conditions has
been extended to three point bending test stress conditions.
The importance of understanding the complex interaction of
processing parameters and mechanical properties increases,
as powder metallurgy continues to increase in acceptance as
a method for fabricating complex near net shaped parts. The
Weibull theory approach has potential for use in recursive
mechanistic-empirical design procedure. A very wide scat-
ter is usually observed in laboratory strength test (tensile and
transverse rupture) data of sinter-hardened Mn steel specimens
due to randomness in the number, orientation and distribution
of pores and micro-voids [22]. This leads to an uncertainty in
choosing the representative design strength which leads to the
need for a probabilistic approach to the analysis of test data.

The characterization of strength of the semi-brittle
sinter-hardened steels is problematic due to the scatter of test
results. Several proposals using Weibull statistics have been
made, some of them in terms of UTS and others in terms
of TRS; some authors employ a two parameters Weibull func-
tion, while others use a three parameters function. An analysis
about the relationship between Weibull distributions expressed
in terms of UTS and TRS is presented in this paper. It is shown
that, if the UTS results follow a 3p-Weibull, their equivalent
TRS values do not exactly fit a 3p-Weibull function obtained
by means of MLE. Nevertheless, an approximated 3p-Weibull
function in TRS terms is proposed in this work. It fits very
well with the corrected values and their parameters are related
to those expressed in TS terms.

Newkirk et al. [11] compared the 2-p and 3-p Weibull
distribution for TRS of PM steel parts. They discussed the use
of Weibull statistics to analyse the properties of PM parts, and
suggest new ways to determine property variability for design
application. The 2-p and 3-p Weibull distributions were com-
pared on the basis of the correlation coefficient of the best fit
line and the data. This is consistent with the present results in
that the 3-p Weibull distribution in general provides a slightly
better fit of the data than the 2-p Weibull distribution, although
the 2-p Weibull distribution provides a reasonable fit. If the
3-p Weibull provides a slightly better fit to fracture proper-
ties of PM steels data, the question must be raised as to why
the 2-p Weibull distribution is used instead? The best answer
available seems to be that it is simply easier to use the 2-p
Weibull distribution, although it may not be accurate to do so.
However, sometimes it is recommended that the 3-p Weibull
distribution be used to characterise PM sinter-hardened struc-
tural steels properties.

The primary basis for this recommendation is small dif-
ferences in allowable loads between the 2-p and 3-p Weibull

distributions. Similar OSL and the fact that the location pa-
rameters of the 3-p distribution is near the first order statistic
are other supporting reasons for the recommendation. The last
reason implies there is a load near the lowest data point that
can be applied to the specimen (or structural member) for
which there is no chance of failure. This seems counterintu-
itive, as it seems reasonable that there would be some chance
of failure at any load level, albeit the probability could be
quite small. The 3-p Weibull analysis provides a consistent
measure of variability and avoids some of drawbacks of the
2-p parameter form, but is important to note that the Weibull
parameters do not capture all of the material behaviour.

When we use a three parameter Weibull the modulus, m,
is less than the two parameter modulus (Table 3). The 3-p
Weibull is a much more complex distribution than the two
parameter and we have fixed requirements to meet before we
adopt the 3-p solution. The four hard fixed rules for using
3-parameter to quantify property variability in PM inhomoge-
neous steel are:
– we must have N =15 or more failures, some experts say

100,
– we must be able to explain why the physics of failure

support a guaranteed failure free zone,
– the 2-p plot should show curvature,
– the distribution analysis must favour the 3-p.

If we meet all these criteria above, the 3-p distribution
is the best distribution and the 3-p Weibull modulus is the
correct modulus.

The inherent scatter in strength and size effects general-
ly means that reliability analysis of advanced sinter-hardened
structural parts is usually more favourable than using standard
safety factors. If a quasi-brittle material with an obvious scatter
in tensile strength is selected for its high-strength attributes,
then statistical analysis should be an integral part of the de-
sign process. But this statistical approach involves a certain
risk of unacceptable performance, identified as a component’s
probability of failure (or alternatively, component reliability).

7. Conclusions

1. Ultimate tensile strength (UTS) and transverse rup-
ture strength (TRS) test data from 24 batches of Mn
sinter-hardened steel specimens have been analysed. The
effect of different processing parameters on the mechan-
ical strength of PM steels was quantified by using the
Weibull analysis.

2. A Weibull analysis of the properties of several PM Mn
sinter-hardened steels implies that an intrinsic flaw popu-
lation of regions that accumulate premature high strain is
responsible for the variability of strength for these mate-
rials. The finite capacity for plastic straining in Mn PM
steels results in higher 2-p Weibull moduli than those of
engineering ceramics. However, the mechanical proper-
ties (TRS and UTS) sinter-hardened manganese steels are
somewhat variable, and this variability has been analysed
using 2-p and 3-p Weibull analysis of distributions of fail-
ure strengths.

3. Unlike the normal distribution, which is symmetric to the
mean value, the Weibull distribution is left skewed cor-
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relating well with the obtained experimental strength da-
ta, which also present a similar skewed pattern. For this
reason an attempt has been made to propose such an ap-
proach which employs Weibull’s statistical strength theory.
Data set of press and sinter-hardened Mn steels have been
analysed and generally the 3-p Weibull statistics produced
only slightly better fit than the 2-p Weibull statistics when
describing the results of UTS and TRS testing on relatively
small number of specimens.

4. The 3-p approach is needed because of nonzero min-
imum failure strength of the investigated materials, re-
sulting from the finite capability for plastic strain, which
makes the failure behaviour quite different from that of
sintered ceramic materials.
The Weibull parameters obtained using these techniques
can be used to obtain design strengths similar to -3σ and
−6σ strengths. The distribution of failure loads that fit a
Weibull distribution is different from the predicted by a
Gauss distribution, so there is not proper standard devia-
tion. Nevertheless, it is possible to derive a failure strength
similar to the -6σ strength used by PM component design-
ers. The -6σ strength designates a stress where there is
only a 3.4·10−4% chance of failure, or P f = 3.4·10−6.
It is possible to solve for the -6σ equivalent strength
using Eq. 1 [6]. For Weibull modulus, m, of 10 and a
σr = σ0 − σU = 200 MPa, the formula is:

3.4 · 10−6 = 1 − exp
(
−σ − σu

200

)10
(16)

When solved for σ − σU implies that 100 – 3.4·10−4 =

99.99966% of samples will have failure loads of 56.8 MPa
higher than threshold value, σu. A less rigorous -3σ equiv-
alent can be solved to show that 99.865% of samples will
have failure loads of 103.29 MPa higher than threshold
value.

5. As the proposed approach employs Weibull’s parameters,
goodness of fit tests have been performed to check the
fitness of tests data to Weibull’s distribution. It was found
that the 3-p Weibull a little more accurately models the ac-
tual distributions. It allows for the use of a threshold value,
consistent with mechanical properties of PM steels. The
threshold value could be used to provide a minimum prop-
erty for the design of parts where a reliable performance
is required. When a reliable performance is required this
value could be used to provide a minimum property for
the design of structural members.

6. The 3-p Weibull is a much more complex distribution than
the two parameter and we have fixed requirements to meet
before we adopt the 3-p solution. However, the four hard
fixed rules for using 3-parameter are: (a) first of all we
must be able to explain why the physics of failure support
a guaranteed failure-free zone; (b) we must have 15 or
more failures; (c) the 2-p plot should show curvature; (d)
the statistical distribution analysis must favour the 3-p. If
we meet all these criteria above, the 3-p distribution is

the best distribution and the 3-p Weibull modulus is the
correct Weibull modulus.
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