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SHARP INTERFACE NUMERICAL MODELING OF SOLIDIFICATION PROCESS OF PURE METAL

SPOSÓB MODELOWANIA NUMERYCZNEGO PROCESU KRZEPNIĘCIA Z OSTRYM FRONTEM

The paper is focused on the study of the solidification process of pure metals, in which the solidification front is smooth.
It has the shape of a surface separating liquid from solid in three dimensional space or a curve in 2D. The location and
topology of moving interface change over time and its velocity depends on the values of heat fluxes on the solid and liquid
side of it.

Such a formulation belongs to a group called Stefan problems. A mathematical model of the Stefan problem is based
on differential equations of heat conduction and interface motion. This system of equations is supplemented by appropriate
initial and boundary conditions as well as the continuity conditions at the solidification interface. The solution involves the
determination of temporary temperature field and interface position. Typically, it is impossible to obtain the exact solution of
such problem.

This paper presents a mathematical model for the two-dimensional problem. The equation of heat conduction is sup-
plemented with Dirichlet and Neumann boundary conditions. Interface motion is described by the level set equation which
solution is sought in the form of temporary distribution of the signed distance function. Zero level of the distance field coincides
with the position of the front. Values of the signed distance function obtained from the level set equation require systematic
reinitialization.

Numerical model of the process based on the finite element method (FEM) is also presented. FEM equations are derived
and discussed. The explicit time integration scheme is proposed. It helps to avoid solving the system of equations during each
time step. The reinitialization procedure of the signed distance function is described in detail. Examples of numerical analysis
of the solidification process of pure copper within the complex geometry are presented. Results obtained from the use of
constant material properties are compared with those obtained from the use of temperature dependent properties.
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W pracy skupiono się na badaniu procesu krzepnięcia czystych metali, podczas którego front krzepnięcia pozostaje płaski.
W przypadku trójwymiarowym jest on powierzchnią oddzielającą ciecz od ciała stałego, w przypadku dwuwymiarowym ma
postać krzywej. Położenie i topologia frontu krzepnięcia zmienia się w czasie, a prędkość przemieszczania zależy od różnicy
wartości strumieni cieplnych po stronie ciała stałego i cieczy.

Takie sformułowanie klasyfikuje opisywane zjawisko w grupie tzw. zagadnień Stefana. Model matematyczny tego procesu
stanowią równania różniczkowe przewodnictwa ciepła oraz ruchu powierzchni międzyfazowej. Układ ten uzupełniają odpowied-
nie warunki brzegowe, początkowe oraz warunki ciągłości na froncie. Jego rozwiązanie polega na wyznaczeniu chwilowych
pól temperatury oraz położenia frontu. Najczęściej nie da się uzyskać rozwiązania tak sformułowanego problemu w sposób
dokładny.

W pracy zaprezentowano model matematyczny zagadnienia dla przypadku płaskiego. Równanie różniczkowe przewod-
nictwa ciepła uzupełniono warunkami brzegowymi Dirichleta oraz Neumanna. Ruch interfejsu międzyfazowego opisano tzw.
równaniem poziomic (ang. level set equation), którego rozwiązania poszukiwano w postaci chwilowego rozkładu funkcji
dystansu. Izolinia zerowa tego rozkładu pokrywa się z położeniem frontu. Otrzymane wartości funkcji dystansu wymagają
systematycznej reinicjalizacji.

Przedstawiono również model numeryczny procesu bazujący na metodzie elementów skończonych. Opisano schemat
postępowania prowadzący do otrzymania dyskretnych równań MES. Wykorzystano jawny schemat całkowania po czasie, co
pozwoliło uniknąć konieczności rozwiązywania układu równań zarówno w przypadku równania przewodnictwa ciepła jak
i równania poziomic. Szczegółowo opisano metodę reinicjalizowania funkcji dystansu. Zaprezentowano przykłady analizy
numerycznej procesu krzepnięcia czystej miedzi w obszarze o złożonej geometrii. Porównano wyniki otrzymane dla stałych
własności materiałowych z wynikami uzyskanymi z wykorzystaniem własności zależnych od temperatury.
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1. Introduction

Sharp interface solidification belongs to a large set
of so called phase transition problems. They are thermo-
dynamic processes in which material changes its physical
state. These processes occur due to temperature, pres-
sure, etc., and a transition from one state to another is of-
ten discontinuous. Examples of such processes include,
for example freezing of water, evaporation, melting and
solidification of metals and alloys, etc. Solidification of
a pure metal belongs to the group of Stefan problems
which describe various phenomena that take place with
the existence of a sharp internal interface. In 1831, Lame
and Clapeyron dealt with such problems for the first time.
The name ”Stefan problems” comes from the name of
the Austrian scientist Joseph Stefan, who worked in 1890
on determining the speed of the front of freezing water.

Solidification process considered on a macroscopic
scale can be done in two ways. In the case of alloy
solidification front usually loses stability. This phenom-
enon is caused by segregation of the components on
the front and called solutal undercooling [1-4]. It leads
to the destabilization of the shape of the front and the
formation of a mushy zone. Even when the explicit ef-
fect of macrosegregation is neglected one can consider it
indirectly adopting one of the models based on the solid-
ification between the solidus and liquidus temperatures
[5-10].

During solidification of pure metal interface stabilty
depends on the direction of heat flow [2]. In the case of
directional solidification temperature of the liquid T l al-
ways increases ahead of the interface, therefore the heat
flow direction is opposite that of solid phase growth.
When a perturbation of amplitude ∆x appears at an
smooth interface, the heat flow through its tip increases
(Fig. 1). Therefore, temperature T l

1 < T l
2 and more heat is

transported from the liquid to the tip of the perturbation
rather than a recess. As a result, the perturbation melts
back and the planar interface is stabilized. In equiaxed
solidification, the opposite process takes place.

Interface tracking methods are generally based on
the phase-field method, level set method (LSM) or cel-
lular automata [11]. The basic idea of the phase-field
method is to introduce a phase-field variable that varies
smoothly from zero to unity between the solid and liquid
phases over the region, which has a small but numeri-
cally resolvable thickness [12-14]. LSM is an alternative
method to track the sharp interface directly. It is wide-
ly used in various applications such as two-phase flow,
crack propagation, computer vision and image process-
ing. In this method, interfacial geometric quantities such
as curvature and outward normal can be easily calculat-
ed using the level set variable ϕ. The method was first
applied to Stefan problems in [15].

Fig. 1. Perturbations on a flat front during directional solidification of pure metal
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Computer simulations of the solidification process
with a sharp front, such as pure metal solidification
process is a challenge for developers of specialized soft-
ware. When building solver one have to consider the
possibility of interfaces of any shape. Another important
requirement of the software is the correct calculation of
the temperature distribution on both sides of the front. It
is known, that the temporary position of the front can be
any. This means that it can be arbitrarily positioned be-
tween the nodes, which leads to considerable difficulties
in determining the temperature along it.

Stefan problem for solidification or melting process-
es, which are described in the literature can be divided
into three groups:
• methods based on modifications of approximation

functions in finite elements cut by the solidification
interface. In this approach the finite element mesh
does not change with time [16];

• methods based on the adaptation of mesh. In this
case, the edges of the finite elements are matched to
the shape of the front [17];

• method based on the fuzzy front. Solidification at a
constant temperature is replaced by a process which
takes place in a narrow temperature range, as in the
case of alloys [18, 19].

2. Mathematical model of solidification

Process of directional solidification of pure metal in
the two-dimensional area is considered. Natural convec-

tion of the liquid phase is omitted in the model. Process
scheme is shown in Fig. 2. Region containing liquid
phase ΩL is separated from the solidified one ΩS. Sep-
aration curve is sharp moving interface ΓLS, which runs
between them.

During directional solidification, heat is transported
in the direction of the solid, which results in growth of
the solid phase. The rate of growth of the solid has a
direct influence on the position of ΓLS.

Governing equations of the mathematical model are
as follows

Transient heat conduction equation:

∂

∂x

(
λ
∂T
∂x

)
+
∂

∂y

(
λ
∂T
∂y

)
− cρ

∂T
∂t

= 0 (1)

where T = T (x,y,t) is the temperature [K], λ = λ(T )
– coefficient of thermal conductivity [J s−1 m−1 K−1],
c = c(T ) – specific heat [J kg−1 K−1], ρ = ρ(T ) – den-
sity [kg m−3], t – time [s], x, y - Cartesian coordinates
[m].

Level set equation that governs the movement of
ΓLS:

ux
∂φ

∂x
+ uy

∂φ

∂y
+
∂φ

∂t
= 0 (2)

where ϕ = ϕ(x,y,t) is a signed distance function that
measures the distance between a particular point and
solidification interface [m], ux, uy – components of the
interface velocity vector [m s−1].

Fig. 2. Directional solidification scheme of pure metal
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ϕ is a function of position and time, which meets the
following conditions resulting from the LSM [20-22]:

ϕ (x, t) = min ‖
x̄∈ΓLS

x − x̄‖sgn (ns · (x − x̄)) (3)

where ns is the normal vector pointing outwards ΓLS, x̄
is a vector of the position of ΓLS.

Distance function ϕ can take the following values

φ (x, t) > 0, x ∈ ΩL

φ (x, t) = 0, x ∈ ΓLS

φ (x, t) < 0, x ∈ ΩS

(4)

The mathematical model is supplemented with appropri-
ate initial and boundary conditions as well as the conti-
nuity conditions at the interface.

The initial conditions:

T |t=0 = T0 (5)

φ|t=0 = φ0 (6)

The boundary conditions:

T |Γext
= Tb (7)

−λ∂T
∂n

∣∣∣∣∣
Γext

= q (8)

The continuity conditions at ΓLS:

T s|ΓLS
= T l

∣∣∣
ΓLS

= TM (9)

λs
∂T s

∂ns

∣∣∣∣∣
ΓLS

− λl
∂T l

∂ns

∣∣∣∣∣∣
ΓLS

= ρsL |u| (10)

where T0 = T0(x,y) is the initial temperature [K], ϕ0
= ϕ0(x,y) – the initial position of solidification front [m],
Tb = Tb(x,y) – a given boundary temperature [K], Γext
– the external boundary, n – the direction of the vector
pointing outwards Γext , ns – the direction of the vec-
tor pointing outwards ΓLS, TM – melting (solidification)
temperature [K], q – heat flux normal to the external
boundary Γext [J s−1 m−2], u – velocity of the solidifica-
tion front, L – latent heat of solidification [J kg−1], s, l
– means a solid or liquid.

3. Finite element formulation

In accordance with the weighted residuals method,
equations (1-2) are multiplied by a weight function
w = w(x,y) then integrated over the region Ω = ΩS∪ΩL.

∫∫

Ω

w
[
∂

∂x

(
λ
∂T
∂x

)
+
∂

∂y

(
λ
∂T
∂y

)
− cρ

∂T
∂t

]
dxdy = 0

(11)

∫∫

Ω

w
[
ux
∂φ

∂x
+ uy

∂φ

∂y
+
∂φ

∂t

]
dxdy = 0 (12)

In order to reduce the order of the equation (11) Green’s
theorem is used, which leads to the following weak form

∫∫

Ω

λ

(
∂w
∂x

∂T
∂x

+
∂w
∂y

∂T
∂y

)
dxdy

+

∫∫

Ω

cρw
∂T
∂t

dxdy =

∮

Γext

λw
∂T
∂n

ds
(13)

FEM equations are derived according to the Galerkin
method, where the weight functions w(x,y) are the same
as the shape functions N(x,y). The whole region is spa-
tially discretized with the use of a triangular mesh. Tem-
perature T , the distance ϕ and their spatial and time
derivatives are approximated as follows

T (x, y, t) =

3∑

i=1

Ni (x, y)Ti = [N] {T } (14)

∂T (x, y, t)
∂x

=
3∑

i=1

∂Ni (x, y)
∂x

Ti = [Dx] {T } ,
∂T (x, y, t)

∂y
=

3∑
i=1

∂Ni (x, y)
∂y

Ti =
[
Dy

]
{T }

(15)

∂T (x, y, t)
∂t

=

3∑

i=1

Ni (x, y)
∂Ti

∂t
= [N]

{
∂T
∂t

}
(16)

λ
∂T
∂n

= −
2∑

i=1

Ñi (ξ) qi =
[
Ñ
]
{q} (17)

φ (x, y, t) =

3∑

i=1

Ni (x, y) φi = [N] {φ} (18)

∂φ (x, y, t)
∂x

=
3∑

i=1

∂Ni (x, y)
∂x

φi = [Dx] {φ} ,
∂φ (x, y, t)

∂y
=

3∑
i=1

∂Ni (x, y)
∂y

φi =
[
Dy

]
{φ}

(19)

∂φ (x, y, t)
∂t

=

3∑

i=1

Ni (x, y)
∂φi

∂t
= [N]

{
∂φ

∂t

}
(20)

where ξ is the coordinate measured along the external
edge Γ

(e)
ext of the triangular element,

[
Ñ
]

=
[

Ñ1 Ñ2

]

are the shape functions at Γ
(e)
ext and the remaining vectors

are defined as follows

[N] =
[
N1 N2 N3

]
, [Dx] =

[
∂N1

∂x
∂N2

∂x
∂N3

∂x

]
,

[
Dy

]
=

[
∂N1

∂y
∂N2

∂y
∂N3

∂y

]

(21)
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{T } =



T1

T2

T3


,

{
∂T
∂t

}
=



∂T1/∂t
∂T2/∂t
∂T3/∂t


, {q} =


q1

q2


(22)

{φ} =



φ1

φ2

φ3


,

{
∂φ
∂t

}
=



∂φ1/∂t
∂φ2/∂t
∂φ3/∂t


(23)

Relations (14-20) are inserted into (12-13) leading to the
following equations for a single finite element

λ(e)
∫∫

Ω(e)

(
[Dx]T [Dx] +

[
Dy

]T [
Dy

])
dxdy {T }+

(cρ)(e)
∫∫

Ω(e)

[N]T [N] dxdy
{
∂T
∂t

}
= −

∮

Γ
(e)
ext

[
Ñ
]T [

Ñ
]
ds {q}

(24)∫∫

Ω(e)

(
u(e)

x [N]T [Dx] + u(e)
y [N]T

[
Dy

])
dxdy {φ}+

∫∫

Ω(e)

[N]T [N] dxdy
{
∂φ

∂t

}
= 0

(25)

Above equations contain matrices (or vectors) that can
be written as

K(e)
T = λ(e)

∫∫

Ω(e)

(
[Dx]T [Dx] +

[
Dy

]T [
Dy

])
dxdy (26)

M(e)
T = (cρ)(e)

∫∫

Ω(e)

[N]T [N] dxdy (27)

B(e)
T = −

∮

Γ
(e)
ext

[
Ñ
]T [

Ñ
]
ds {q} (28)

A(e)
φ =

∫∫

Ω(e)

(
u(e)

x [N]T [Dx] + u(e)
y [N]T

[
Dy

])
dxdy (29)

M(e)
φ =

∫∫

Ω(e)

[N]T [N] dxdy (30)

T(e) = {T } , Ṫ(e) =

{
∂T
∂t

}
, ϕ(e) = {φ} , ϕ̇(e) =

{
∂φ

∂t

}

(31)

where K(e)
T is the thermal conductivity matrix, M(e)

T –
heat capacity matrix, B(e)

T – vector associated with the
boundary conditions, A(e)

φ – advection matrix, M(e)
φ –

mass matrix.

Substituting (26-31) into (24-25) leads to the matrix
form of the local FEM equations

K(e)
T T(e) + M(e)

T Ṫ(e) = B(e)
T (32)

A(e)
φ ϕ

(e) + M(e)
φ ϕ̇

(e) = 0 (33)

Time discretization procedure is based on the forward
Euler method. The procedure requires a time grid to be
introduced

t0, t1, . . . , t f−1, t f , . . . , tn (34)

The time derivatives of T and ϕ in the range ∆t = t f +1−t f

are approximated using the following difference schemes

t ∈
[
t f−1, t f

]
: Ṫ =

T f − T f−1

∆t
, ϕ̇ =

ϕ f − ϕ f−1

∆t (35)

These schemes are substituted into (32-33) and after el-
ementary transformations and aggregation the following
global FEM equations are obtained

T f = ∆tM−1
T

[
BT +

(
1
∆t

MT −KT

)
T f−1

]
(36)

ϕ f = ∆tM−1
φ

(
1
∆t

Mφ − Aφ

)
ϕ f−1 (37)

Dirichlet and Neumann boundary conditions are used to
supplement (36). Assumed Neumann boundary condi-
tion here is the thermal insulation, q=0. Eq. (37) shows
an initial problem, thus only initial condition is intro-
duced, for example the position of the front at time
t =0 [s].

Very important part of the presented model is the
proper introduction of the continuity conditions (9-10).
These conditions governs the velocity of the solidifica-
tion interface. The main role plays here a narrow band of
finite elements laying on the solidification interface as it
is shown in Fig. 3. ”Zone 0” is consisted of the elements
cut by ΓLS that is a discontinuity from the mathematical
point of view. In the paper [23] an approach using dis-
continuous shape functions was proposed. In this work
ΓLS is diffused in the ”zone 0” to avoid the difficulties
associated with the discontinuity. Every node belong-
ing to that region has melting temperature TM , which
is introduced to (36) in the form of Dirichlet boundary
condition. ”Zone 1” contains elements from the solid and
liquid sides of ΓLS. Temperature taken from the nodes
laying on the solid and liquid sides of ΓLS are used to
calculate the heat fluxes on the interface. Then the ve-
locity of ΓLS is calculated according to (10).
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Fig. 3. ΓLS surrounded by a narrow band of finite elements

In Fig. 4 the closest neighborhood of the solidifying
element is shown. Light gray triangle has the temper-
ature TM because the melting point is set to all three
nodes. Adjacent elements are dark grey. Five of them
are used to calculate heat flux on the liquid side of ΓLS.
Heat fluxes in the directions x and y in each of these
elements are calculated with the use of derivatives of
shape functions and nodal temperatures

q(e1)
x = λ(e1)

3∑
i=1

∂Ni

∂x
Ti, q(e1)

y = λ(e1)
3∑

i=1

∂Ni

∂y
Ti (38)

Then the average fluxes are calculated using following
formulas

q(liquid)
x =

1
n

n∑
j=1

q(e j)
x , q(liquid)

y =
1
n

n∑
j=1

q(e j)
y (39)

where n is the number of liquid neighbors of solidifying
element.

Analogously heat flux in the solid is calculated using
temperature taken from three elements lying on the so-
lidified side of ΓLS. This approach allows to calculate the

average speed of ΓLS in the solidifying element. Velocity
of the front in the other elements are calculated in the
same way.

The last problem that needs discussion is the reini-
tialization of the signed distance function ϕ [24, 25].
The evolution of (2) often distorts ϕ in a sense that its
slope is too flat or too steep around ΓLS. In such cases,
a small perturbation of the level function may result in
a big change of interface location, and the level function
may lose enough regularity near the interface. Thus is
very important to correct the values of ϕ to meet the
following condition

|∇φ| = 1 (40)

Idea of the proposed method of reinitialization is
shown in Fig. 4. It involves the introduction of the control
points on the section of ΓLS in the particular triangular
element. Then the distances between them and the nodes
n1-n12 lying in the neighborhood are calculated and the
smallest value is remembered. The operation is repeated
for the whole front. The method is simple and effective.
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Fig. 4. Neighborhood of the element cut by ΓLS

4. Examples of calculation

One of the major purposes of the calculation was to
show the effectiveness and robustness of described nu-
merical method in modeling of the solidification process
of pure copper. The effects of applied method of front
tracking were emphasized as well as reinitialization of
level set function ϕ. Calculations were carried out in
the complex planar geometry. Shape of the considered
region was shown in Fig. 5 as well as initial and bound-
ary conditions. Finite element mesh was composed of
328220 triangles with 164111 nodes. At time t=0 [s]
the temperature of the entire region was uniform and
equal to 1500 [K]. On the upper boundary the thermal
insulation was employed. On the side boundaries Dirich-
let boundary conditions were used with Tb=300 [K] as
well as at the bottom, where the boundary temperature
was equal to 600 [K].

Two numerical simulations were performed, the
first using constant material properties (Table 1) and
the second, which uses the temperature dependent prop-
erties (Table 2). The purpose of such approach was
to show the differences between the results obtained
from the calculations carried out with different ther-
mophysical properties of copper. For the first calcula-
tion time step was equal to 2e-4 [s] while it was two
times shorter for the second one. Shorter time step in
the latter case was needed because of the temperature
dependent material properties employed in the model.

Fig. 5. Dimensions of the casting (in meters), boundary and initial
conditions
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TABLE 1
Material properties of pure copper independent of temperature [26]

Material property Solid Liquid

ρ [kg m−3] 8920.0 8300.0

λ [J s−1 m−1 K−1] 330.0 250.0

c [J kg−1 K−1] 420.0 544.0

L [J kg−1] 204000.0

TM [K] 1357.0

The results included temporary distributions of the
temperature as well as the positions and velocities of the
solidification front. Temperature distributions at t=1 and
t=15 [s] are shown in Fig. 6. Location of the melting
point isotherm TM=1357 [K] is marked by the dashed
curve. Steep temperature gradient appearing on the solid
side of the front is clearly noticeable as well as a much
more flatter on the liquid one. Differences between the
gradients were most pronounced at the very early stage
of the process (Fig. 6a).

TABLE 2
Material properties of pure copper dependent on temperature

[27-30]

T
[K]

ρ

[kg m−3]
λ

[J s−1 m−1 K−1]
c

[J kg−1 K−1]

300.0

8933.0

401.0 385.0

400.0 393.0 398.44

500.0 386.5 408.0

600.0 379.0 417.0

700.0 372.8 425.0

800.0 366.0 432.0

900.0 359.11 441.0

1000.0 352.0 451.0

1100.0 345.41 464.0

1200.0 339.0 480.0

1300.0 331.71 506.0

1357.0 7998.0 160.0

495.01400.0 7962.0 162.0

1450.0 7921.0 164.0

1500.0 7881.0 166.0

Fig. 6. Distribution of the temperature at a) t =1 [s], b) t =15 [s] (TM is marked with dashed curve)
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Temporary positions of the solidification interface
obtained from the both cases of simulation are shown in
Fig. 7. The comparison was done at selected moments
t=1, t=5, t=10 and t=20 [s]. It shows that the differences
between locations of the front at the early stage of the
processes were negligible. They were getting more no-
ticeable before the end of the solidification but in fact
they were not significant comparing to the dimensions
of the whole region.

Fig. 7. Evolution of the solidification interface

The speed of the solidification front was calcula-
ted at each time step with the use of (10) in the nodes
belonging to the narrow band of elements near the in-
terface. Velocity vectors were directed normal to the in-
terface as in Fig. 8. The front was moving from the
cool boundaries to the centre of the casting keeping a
direction perpendicular to the upper boundary.

The velocity of the solidification interface was de-
creasing rapidly according to time. The maximum ve-
locity was at the start of the process due to the very
steep temperature gradient in the solid layer near the cool
boundaries (Fig. 9). At t=0.1 [s] the front was moving
with the speed of 0.035 [m s−1] and after several seconds
its velocity decreased about ten times. One can observe
that velocity of the sharp front during solidification of
pure metal tends to a certain value. This value was in
this case approximately equal to 0.003 [m s−1].

Fig. 8. Velocity vectors at the solidification front

Fig. 9. Change of the maximum velocity of the front

The process ended after 26.4 [s] in the first case
of computations and after 24.8 [s] in the second one.
This shows that the differences between material prop-
erties had a very subtle impact on the duration of the
solidification process.
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5. Conclusions

Described mathematical and numerical models of
solidification process of pure copper shows the possibil-
ity of introducing the continuity conditions at the sharp
solidification front in the diffused form. The presented
front tracking technique, based on the LSM proves its
usefulness and robustness in solving the problems with
moving internal boundaries. The formulation, based on
the FEM was the basis for creation an in-home computer
program. This is the solid beginning for further analysis
of solidification process taking into account such phe-
nomena as natural convection of the liquid phase or
solute distribution.
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