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PHOTOACOUSTIC DIAGNOSTICS OF INHOMOGENEOUS GYROTROPIC MATERIALS WITH INTERNAL STRESS USING
BESSEL LIGHT BEAMS

FOTOAKUSTYCZNA DIAGNOSTYKA NIEJEDNORODNYCH ŻYROSKOPOWYCH MATERIAŁÓW Z WEWNĘTRZNYMI
NAPRĘŻENIAMI Z ZASTOSOWANIEM LASEROWYCH WIĄZEK BESSELA

This paper considers the investigation of photoacoustic transformation in naturally-gyrotropic and magnetoactive crystals,
with internal stress under sound excitation in different modes by Bessel light beams (BLB). In the range of high modulation
frequencies (Ω > 1 MHz), the dependence of the photoacoustic response amplitude on the radial coordinate ρ exhibits resonant
phenomenon, which can be used to increase the resolution of photoacoustic spectroscopy for media with internal stresses.

The expressions for amplitudes of photoacoustic signals in strained crystalline samples were obtained under different
boundary conditions, taking into account the dependence of the thermoelastic coupling coefficient on the initial strain in the
sample. It was showed that a resonant increase in the amplitude signal is related to the dependence on the geometric parameters
of the sample-piezoelectric transducer system, the values of Murnagan constants, the mode composition of the Bessel light
beam, and its amplitude modulation frequency.
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W pracy przedstawiono wyniki badań transformacji fotoakustycznej poprzez dźwięk generowany laserowymi wiązka-
mi Bessela o różnych modach w kryształach naturalnie żyrotropowych i magnetoaktywnych, z wewnętrznymi naprężeniami.
Stwierdzono, że w zakresie modulacji o wysokiej częstotliwości (Ω > 1 MHz), zależność amplitudy odpowiedzi fotoakustycz-
nej od radialnej współrzędnej wykazuje efekt rezonansowy. Efekt ten może być wykorzystany do podwyższenia rozdzielczości
spektroskopii fotoakustycznej w ośrodkach z wewnętrznymi naprężeniami.

Otrzymano wyrażenia na amplitudy sygnałów fotoakustycznych w próbkach krystalicznych z wewnętrznymi naprężeniami,
przy różnych warunkach brzegowych. Brano przy tym pod uwagę zależność współczynnika sprzężenia termoplastycznego
od wewnętrznych naprężeń w próbce. Wykazano, że rezonansowy wzrost amplitudy sygnału jest zależny od geometrycznych
parametrów układu próbka – przetwornik piezoelektryczny, wartości stałych Murnagana, modów wiązki Bessela i częstotliwości
modulacji.

1. Introduction

Method of laser photoacoustic spectroscopy has
been broadly applicable lately for the investigation of
interaction between electromagnetic radiation and dif-
ferent media. The use of laser sources in photoacoustics
permitted to make a transition to qualitative higher level
of measurement and to increase substantially sensitivity
of the method has been demonstrated at investigation
of media in different aggregative states in wide spec-
tral range from ultraviolet to infrared, exhibition absorp-

tion both strong -105 cm−1 and very weak – 10−10 cm−1

[1–3].
And advanced method of photoacoustic spec-

troscopy along with conventional methods is applied at
investigation of dissipative, thermal and nonlinear char-
acteristics of magnetoactive and naturally gyrotropic me-
dia.

When studying the photoacoustic transformation in
inhomogeneous and crystalline anisotropy, gyrotropy,
and dichroism [4, 5]. Therefore, one of the main prob-
lems media, it is necessary to take into account the fact
that the absorption of electromagnetic waves in them has
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a number of specific features which are caused, for ex-
ample, by of laser photoacoustic spectroscopy is to find
analytical solutions for inhomogeneous heat conduction
equations, in which the right hand side contains the en-
ergy dissipation as a heat source power density. Hav-
ing solved the electrodynamic boundary value problems
using the covariant methods of direct tensor calculus
(which were developed for the first time by F.I. Fedorov
[4, 6]), one can easily determine the energy dissipation
in media with an arbitrary combination of gyrotropy,
dichroism, and anisotropy, for example, in crystals of
middle syngonies [7], crystals with a cholesteric struc-
ture of anisotropy [8], naturally gyrotropic superlattices
[9], etc.

Note that the approach to the problems of photoa-
coustic transformation, which is based on the solution
of boundary value problems of electrodynamics by the
covariant method and the subsequent calculation of the
energy dissipation, is preferred over those traditional-
ly used in photoacoustics [1, 6, 8], because it makes it
possible to take into account (when necessary) boundary
diffraction effects, multibeam interference, peculiarities
of laser mode structure, etc.

The purpose of this study was to analyze
naturally-gyrotropic and magnetoactive crystals with in-
ternal stress by laser photoacoustic spectroscopy under
sound excitation by Bessel light beams (BLB) in differ-
ent modes.

2. Magnetoactive samples

Let us consider the case of piezoelectric detection of
a photoacoustic signal formed as a result of the absorp-
tion of the TE-mode of an amplitude modulated Bessel
light beam by a crystal with internal stress (Fig. 1).

Fig. 1. Schematic of piezoelectric detection of a photoacoustic signal:
(1) magnetoactive or gyrotropic sample, (2) piezoelectric sensor, (B)
axicon, and (C) Bessel light beam

The properties of magnetoactive sample can be de-
scribed with the help of material equations

E =
(
ε−1 + iGX

)
D,E = G−1H,

B = µH, µ = 1,G−1 =
(
ε−1 + iGX

) , (1)

where GX is antisimmetrical complex tensor of 2nd rank,
dual to vector of magnetic gyration G, with the real part
ReGX = G′ defining the specific rotation of polarization
plane, while imaginary ImGX = G′′ is responsible for
value of magnetic circular dichroism, ε – dielectrical
permittivity.

Considering vectors Ĺ and Â being proportional
ei(kzz+mθ−ωt), from equation (1) and Maxwell equations
in cylindrical coordinate system, we will come to the
equations system for constituents vectors Ĺ and Â:

1) im
2ρEz − ikzEθ = ik0Bρ,

2) ikzEρ − ∂
∂ρ

Ez = ik0Bθ ,

3)
1
ρ
Eθ +

∂

∂ρ
Eϕ − im

ρ
Eρ = ik0Bz, (2)

4) im
2ρBz − ikzBϕ = −ik0GEp,

5) ikzBρ − ∂
∂ρ

Bz = −ik0GEϕ,

6) 1
ρ
Bϕ + ∂

∂ρ
Bϕ − im

ρ
Bρ = −ik0GEz,

where ρ and θ – cylindrical coordinates,
kz = k0

√
ε cos γ – parameter BLB obliquity and equal

to half of the corner at top of the cone of wave vectors,
determining spectrum of spatial parts of BLB. Further
it is simple to receive expression for energy dissipation
of the TE-mode of BLB

QTE = c
4ρ

q2m
ρ|k2

z−2
0G|


kz2Im

(
k2∗
z −2

0G
∗)Im

(
k2z −20G

kz

)

∣∣∣∣∣∣
k2z −20G

kz

∣∣∣∣∣∣
iIm2n − 2Re

(
k2
z −2

0 G
)
Re2n

}
J ′m (qp) Jm (qp) e−2kz2z,

(3)
where Jm (qp) – is the m-th order Bessel function of the
first kind,

J ′m (qp) =
∂Jm (qp)
∂ρ

. (4)

Distribution temperature field in magnetoactive media,
absorbing amplitude-modulated BLB of TE-mode, can
be described by inhomogeneous equation of thermal con-
ductivity

∂2T
∂z2 −

1
βs

∂T
∂t

= − 1
2ks

QTE(z), (5)

where T – temperature, βs and ks coefficients of ther-
mal and temperature conductivity, related by expression
βs = ks/ρ0C, ρ0– sample solidity, C– specific heat.
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Finding general and particular solution of equation
(4), using stationary boundary conditions, expression for
temperature field in absorbing magnetoactive sample

T (z) =

(
2
Im(kz)
σ

e−σz + e−2Im(kz)z
)
ψeiΩt , (6)

ψ =
Q̃TE

2ks(σ2−4Im(kz)2) , σ = (1 + i)
√

Ω
2βs
− coefficient of

thermal diffusivity, Ω – modulation frequency of BLB.
Distribution of temperature field (5) is necessary

for calculation thermoelastic deformations in investigat-
ed sample and piezotranduser, and further for finding
amplitude-phase characteristics of generated PA signal.

To determine deformation at non-linear parallax in
terms of influence on body harmonically modulated on
time laser radiation can be written following equation
for elastic parallaxes [10, 11]

G(3)
3
∂2∆ u3

∂ z2 = g(3) ∂T (z, t)
∂ z

+ ρ0∆ ü3, (7)

G(3)
3 = t(0)

33 + b + 2(n + m)U33 + C33, g(3) =

(1 + ϑU33) γ0, b = 2µ+ (2m−n)U33, C33 = K − 2
3µ+

2�0U33, ϑ − coefficient determining dependence of
elastic connection from initial deformation, γ0– coeffi-
cient of thermoelastic connection for a non deformated
body, K– compressibility, m, n,�0– Murnagan constants,
µ– coefficient Lame, U33– multiplier of initial deforma-
tion vector, t(0)

33 – multiplier of tensor of initial stresses.
Solving equation (6) have expression for parallax

parts of body, determined by deformation under influ-
ence modulated laser radiation at frequency Ω

∆u=
3 D1e−iQz + D2eiQz + Y (8)

where Q =

√
ρ0Ω2

G(3)
3

, Y = Y1e−σz + Y2e−2kz2z,

Y2 = − 2Im(kz)g(3)ψ

G(3)
3 (4Im(kz)2+Q2) , Y1 = − g(3)ψ2Im(kz)

G(3)
3 (σ2+Q2) .

Parallax borders of piezoelement can be found from
differential expression for elastic parallaxes

∂2u(p)
3

∂z2 −
1
v1

∂2

∂t2
u(p)

3 = 0, (9)

Solution of which is

u(p)
3 (z) = P1e−ik1z + P2eik1z. (10)

Coefficients P1 and P2 are in following limited terms,
for case of free borders

F(�) = F1(�), ∆u3(�) = u(p)
3 (�), F(0) = 0, F1(�+�1) = 0,

(11)

where F(z) = cT ∂∆u3
∂z − Bαt∆T and F1(z) = cD ∂u(p)

3
∂z –

tensions; cT = λ + 2µ, λ – Lame coefficient; cD =

cE
(
1 + e2

/(
εscE

))
; e – piezomodule; cE – inflexibility

coefficient of piezoelectric; εs – pressed crystal permit-
tivity; B – volumetric module of elasticity; αt – coeffi-
cient of thermal volume extention.

Basing on methodics of works [11, 12, 13] we have
expression for PA system response, taken from piezo-
tranducer, at generation of thermoelastic signal in mag-
netoactive media by TE-mode of BLB

V = h

(
cT Q cos QL

sin QL X2(L) + X1(L)
)

(
cDk1

cos k1L1
sin k1L1

+
cT Q cos QL

sin QL

) , (12)

where
X(L) = cT ∂Y

∂z
|z=L − BαtT (L);

X1(L) = X(L) + cT iQY (0)e−iQL;

X2(L) = Y (0)e−iQL − Y (L);

L and L1 – thickness of sample and piezoelement;
h = e/εs; k1 = Ω

ν1
; ν1 – sound speed in piezoelement.

As it’s seen from expression (11) value of amplitude
signal taken from piezoelement depends on dissipative
and thermophysical properties of sample, parameter of
magneto-circular dichroism and also on geometrical pa-
rameters of system “sample-piezoelement” and modula-
tion frequency of radiation. Results of graphical analysis
energy dissipation dependence on parameters ρ for dif-
ferent modes of BLB and also amplitude dependence of
PA value on BLB modulation frequency and geometrical
size of system “sample-piezoelement” are given in Fig. 1
and Fig. 2.

First let’s investigate influence change of BLB radius
on dependance energy dissipation in magnetoactive me-
dia from wave length of radiation using MathCad. For
this let’s choose media with the following parameters.
G = 10−5 + i · 10−7, ε = 6.304 + i · 2.56 and BLB with
γ = 0.035.

As it comes from graphs (Fig.2) on oscillation of en-
ergy dissipation is influenced by transversal spatial BLB
structure, determined by Bessel functions of different
ranks.

Changing stress value of external magnetoactive
field, it is possible to influence on energy dissipation
speed. As imaginary part of gyration parameter ex-
pressed through scalar product Verden constant and ten-
sity. In this case maximums on graph of dependence QTE

will shift, that will lead to displacement or appearance
of resonance of PA signal amplitude in other spectral re-
gion. So there is a possibility not only of PA diagnostics
of internal structure of magnetoactive media, but also to
control amplitude-phase characteristics of PA signal.
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Further analyze dependence of PA signal ampli-
tude in elastic-stressed sample on radiation frequen-
cy modulation and geometrical parameters of system
“sample-piezodetector”, which is described by equation
(12).

It’s seen from graphs, that at optimal choice sample
thickness and detector PA signal amplitude can increase
by several times, which let increase resolution capability

of laser PA spectroscopy. Also is necessary to point that
on amplitude values of PA resonances is influenced by
change of BLB radius and wave length of radiation.

Experimental measurement of resonance signals val-
ues taking in consideration expressions (12) let propose
means the of determination of thermophysical, acousti-
cal and dichroic parameters of absorbing elastic-stressed
media by the method of laser PA spectroscopy.

Fig. 2. Dependence of quantity distribution of absorbed heat in magnetoactive media QTE versus λ on radiation wave length and radial
coordinate (r.u. – relative units) a) ρ=8.10−7m,b) ρ=10−6m

Fig. 3. Dependence of PA signal amplitude V (ω) in magnetoactive media on frequency modulation and longitudinal size of sample,
L1 = 5 · 10−4m a) L = 5 · 10−3m, b) L = 7 · 10−3m

Fig. 4. Dependence of PA signal amplitude V (ω) in magnetoactive media on frequency modulation and longitudinal size of piezodetector,
L = 5 · 10−3m a) L1 = 5 · 10−4m, b) L1 = 7 · 10−4m
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3. Natural-gyrotropic sample

We proceed from the coupling equations [6, 14]

~D = ε ~E + iγ ~H,
~B = µ ~H − iγ̃ ~E, (µ = 1)

(13)

where ε = ε1+iε2 is a dielectric tensor and γ = γ1+iγ2 is
the second-rank pseudo tensor, whose real part γ1 = Reγ
determines the specific rotation of the plane of polariza-
tion and the imaginary part γ2 = Imγ responsible for
natural circular dichroism.

Assuming that the vectors ~D and ~B are proportional
to relation exp

[
i (kzz + mϕ − ωt)

]
(1) and using Maxwell

equations

rot ~E = iko ~B,r ot ~B = −iko ~D, (14)

where ko = ω/c – is the wavenumber, we can write a
system of equations for the component of the vectors ~E
and ~B in the chosen cylindrical coordinate system:

im
ρ

Ez−ikzEγ = ik0Bρ,
im
ρ

Bz−ikzBγ = −ik0

(
εEρ + iγBρ

)
,

ikzEρ− ∂
∂ρ

Ez = ik0Bϕ, ikzBρ− ∂
∂ρ

Bz = −ik0

(
εEϕ + iγBϕ

)
,

(15)
1
ρ
Eϕ +

∂

∂ρ
Eϕ − im

ρ
Eρ = ik0Bz,

1
ρ
Bϕ − ∂

∂ρ
Bϕ − im

ρ
Bρ = −ik0 (εEz + iγBz) ,

where ρ, ϕ are cylindrical coordinates, kz =

k0
√
ε cosα = k′z1

+ ik′′z2
and α is the conicity parame-

ter of the Bessel light beam, which is equal to a half of
the angle at the apex of the cone formed by the wave
vectors that determine the spatial frequency spectrum
of the beam. The longitudinal components Ez and Bz,
which satisfy the Helmholtz equation, can be written as
follows:

Ez = czJm (qρ) exp
[
i (kzz + mϕ)

]
,

Bz = bzJm (qρ) exp
[
i (kzz + mϕ)

]
, (16)

where Jm (qρ) is the m-th order Bessel function of the
first kind, bz = ∓iqn±, cz = q, n± =

√
ε±γ is the com-

plex refractive index of eigenwaves in the medium, and
q = k0

√
ε sin α. Assuming that and Ez are Bz specified,

we express the other filed components in terms of these
values and, based on the relations:

QTE = −∂S
TE
z

∂z
, (17)

STE
z =

c
8π

(
ETE
ρ BTE∗

ϕ − ETE
ϕ BTE∗

ρ

)
+ κ.c., (18)

determine the energy dissipation of the TE-mode of
Bessel light beam:

QTE =
ω|ε|ε2

2π

[(
m
qρ

)2
J2
m (qρ) + J ′2m (qρ) +

+
2mk0kz1γ1

q3ρ
Jm (qρ) J ′m (qρ)

]
e−2kz2 ·z = Q̃TE exp

(−2kz2 · z
)
,

(19)
where J ′m (qρ) =

∂Jm(qρ)
∂ρ

.
The heat-source power density for the TH-mode is

determined similarly; however, it is rather cumbersome
and omitted for this reason.

The distribution of the temperature fields in the sam-
ple under study can be found by solving the inhomoge-
neous heat-conduction equation

∇2T − 1
βs

∂T
∂t

= − 1
2ks

Q̃TEeiΩte−2kz2 ·z, (20)

the right-hand side of which includes energy dissipation
for the TE-mode of Bessel light beam (Q is modulation
frequency).

Furthermore, we take into account the dependence
of the thermoelastic coupling coefficient on the initial
strain for the mechanically strained crystal. Based on
the results of [15, 10], where the expression for the
strains with allowance for nonlinear displacements was
reported, we can write the following equation for elastic
displacements (6).

Having jointly solved Eqs. (19) and (6), one can eas-
ily obtain the expression for the displacement of particles
in the sample under study caused by strains induced by
laser radiation modulated at the frequency Ω:

∆UTE
3 (z) = A1e−iQz +A2eiQz + ĒTE

(
e−βz

β2 + k2

)
−
(

e−σsz

σz
2 + kz

)
,

(21)

following designations: ĒTE =
g(3)βETE

G(3)
3

, Q =

√
ρ0Ω2

G(3)
3

,

ETE =
Q̃TE

2ks(β2−σ2
s ) , β = 4π

λ
ε2√
ε1

– light absorption coeffi-

cient, k = Ω
Vs

– is the wavenumber of the sound wave
in the sample, Vs is the speed of sound in the crystal,

σ = (1 + i) a, a =
√

Ω
2βs

– is the thermal diffusivity.
Basing on the technique for determining the

open-circuit voltage across the piezoelectric transduc-
er [12] for a sample with free boundaries, we obtain
the expression for the photoacoustic signal formed in an
elastically strained gyrotropic sample:

V = h · R ·W, (22)

where the factor

R =
sin2 k1�1 + 1(

QcT sin k1�1 + k1cDctgQ� cos k1�1
)
(sin k1�1 + 1)

,

(23)
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describes the purely acoustic properties of the crystalline
sample–piezoelectric transducer system and the factor

W =
[
cTQΨ2 + ctgQ�Ψ3 + (i cos kQ� + sin Q�)(

ctgQ k1cD

QcT − 1
) (

cTΨ1 + ϕ
)]
,

(24)

is responsible for the thermophysical, gyrotropic,
dichroic, and thermoelastic properties of the inhomo-
geneous sample with internal stress. In equations (3.10
– 3.12),

Ψ1 = ĒTE
(

σs

σ2
s +Q2 − β

β2+Q2

)
,

Ψ2 = ĒTE
(

e−β�
β2+Q2 − β

σ2
s +Q2

)
,

(25)

Ψ2 = ĒTE
(
σse−σs�

σ2
s +Q2 − βe−σs�

β2+Q2

)
− BαtETE

(
β
σs

e−σs� − e−β�
)
,

ϕ1 = BαtETE β−σs
σs

,

(26)
h = e/εs, e − is the piezoelectric modulus, εs– is the per-
mittivity of clamped crystal, cD = cE

(
1 + e2

)
/
(
εscE

)
, cE

– is the piezoelectric stiffness; cT = λ + 2µ, λ – is the
Lame coefficient; B – is the bulk elasticity modulus; αt –
is the coefficient of thermal volume expansion, k1 = Ω

Vp
–

is the wavenumber of the sound wave in the piezoelectric
transducer is the wavenumber of the sound wave in the
piezoelectric transducer, and Vp – is the speed of sound
in the piezoelectric crystal.

Fig. 5. Dependence of the photoacoustic signal amplitude on the
modulation frequency Ω

It follows from relations (3.10–3.12) that the am-
plitude signal from the piezoelectric cell depends
in a complicated way on the dissipative, gyrotrop-
ic, and thermophysical properties of the sample; the
thermoelastic strains; the geometric parameters of the
sample–piezoelectric transducer system; the modulation
frequency; and the mode composition of the incident
Bessel light beam.

The expressions for the potential differences aris-
ing in the piezoelectric transducer under other bound-
ary conditions – clamped U (o) = 0, U (� + �1) = 0
and transversely loaded σ (o) = 0, U (� + �2) = 0,
σ (� + �2) = 0, U (0) = 0 boundaries of the crystalline
sample–piezoelectric transducer system, were not con-
sidered.

Fig. 6. Dependences of the photoacoustic signal amplitude on the modulation frequency Ω at different geometric parameters of the
sample–piezoelectric transducer system: a) � = 5, 5 · 10−3m, for � = const b) �1 = 5, 5 · 10−4m, for � = const
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It is of interest to analyze the expressions
(3.10–3.12) for the photoacoustic signal amplitude de-
pending on the modulation frequency Ω.

As follows from Fig. 5, in the range of high modu-
lation frequencies (Ω > 1 MHz), the dependence of the
photoacoustic response amplitude on the radial coordi-
nate ρ exhibits resonant phenomena, which can be used
to increase the resolution of photoacoustic spectroscopy
for media with internal stresses.

From the acoustical point of view, the nature of the
resonant phenomena is as follows. The system under
consideration (crystalline sample–piezoelectric transduc-
er) is a combined vibrator. Its resonant properties are
determined by the R poles, which are roots of Eq. (23):

QcT sin k1�1 = −k1cDctgQ� cos k1�1. (27)

Therefore, depending on the relations between the geo-
metric parameters of the sample and piezoelectric trans-
ducer and on the Murnagan constants, which enter Q
and determine the thermoelastic strain in the crystal,
resonances of different types (half-wave, quarter-wave,
and of a mixed type) may occur.

It can be seen in Fig. 6 that a change in the thick-
ness of the sample or piezoelectric transducer leads to
an increase in the amplitude signal and a shift in the
resonance curves in the frequency range under consid-
eration.

The expressions for amplitudes of photoacoustic sig-
nals in strained crystalline samples were obtained under
different boundary conditions, taking into account the
dependence of the thermoelastic coupling coefficient on
the initial strain in the sample. In the range of high mod-
ulation frequencies, a resonant increase in the amplitude
signal was revealed; this increment depends strongly on
the geometric parameters of the sample–piezoelectric
transducer system, the values of Murnagan constants,
the mode composition of the Bessel light beam, and its
amplitude modulation frequency.

Note that the experimental measurement of the pho-
toacoustic response amplitude suggests a method for de-
termining the thermoelastic coupling coefficient in crys-
talline media with internal stress based on the obtained
expressions (11), (21) – (23).

4. Concluding remarks

It should be noted that when considering the pho-
toacoustic transformation in gyrotropic in piezoelectric
materials with internal stresses, it can be used an expres-
sion of the speed of dissipation of energy, which relates
the expression (3) in work [15]. Then the temperature
field distribution for TE-mode in piezoceramic materials
can be presented in the form:

TTE(z)=U0exp(−σz)− QTE
+

α2
+−β2

s
exp(−α+z)− Q−TE

α2−−β2
s
exp(−α+z) ,

(4.1)
where: α± = 4π

λ
(( ε′′

2
√
ε′

) ± γ′′), σ = (1 + i)a, a =
√

Ω
2βi

– the thermal diffusivity coefficient.
The combined solution (4.1) with the equation for

elastic displacement (6), containing a Murnagan con-
stant, corresponding to nonlinear termoelasticity, will
determine the stress field in the sample. Taking into
account that in a given solution, piezoelectric sample
is simultaneously piezodetector, basing on the type of
Dyugamel-Neumann equation and relationships for elas-
tic fields, one can get an expression for the potential
difference in piezoceramic materials with elastic stress-
es:

∆VTE = VTE
+ − VTE

− ,

VTE
± = −

l∫
0

ETE
3± (z)dz . (28)

The particular type of expression for V, and their analysis
is proposed to be carried out in a separate work.
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