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NUMERICAL APPROACH TO PRECIPITATE GROWTH AND DISSOLUTION CALCULATION

NUMERYCZNE OBLICZENIA WZROSTU I ROZPUSZCZANIA WYDZIELEN

Different aspects of precipitates formation, growth and dissolution have been thoroughly studied and many factors influ-
encing it such as diffusion, thermodynamic properties and kinetics have been taken into consideration.

The aim of this work is to present numerical approach to precipitates growth and dissolution processes, considering them
as diffusion controlled ones, described by the first Fick’s law. There have been solved differential equations with two variables
(time and space) by the means of finite difference method. As a result, there have been obtained dependences of precipitate
radii on time in processes of coagulation and dissolution. Results calculated in such a way have been compared with the values

obtained by the means of other methods.
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Tworzenia si¢ wydzieleri bylo wielokrotnie analizowane, przy czym bramo pod uwagg wiele czynnikéw majacych wplyw
na ten proces np. dyfuzjg, kinetykg oraz wlasciwosci termodynamiczne.

W pracy przedstawiono numeryczne podejécie do procesu rozrostu i rozpuszczania si¢ wydzielef, przy zalozeniu Ze
sa to procesy kontrolowane przez dyfuzje, opisane pierwszym prawem Ficka. Rozwigzano réwnania rézniczkowe z dwoma
zmiennymi (czas i przestrzefi) metodg réznic skoriczonych. Uzyskanc zaleznosci promienia wydzielenia od czasu w procesie
wzrostu wydziele i rozpuszczania. Rezultaty obliczen poréwnano z warto§ciami uzyskanymi innymi metodami.

1. Introduction

Non metallic precipitates which may appear in a liq-
uid metal at various stages of its elaboration or during
its solidification have a strong influence on mechanical
properties of a product. In order to monitor mechanical
properties in relation to microstructure, the knowledge of
the precipitation state is of prime importance. For these
purpose various models have been developed to allow
the prediction of precipitates’ size and distribution using
theories of nucleation and growth of precipitates [1, 2,
3,4,5].

2. Assumptions

As to describe the growth or dissolution of a pre-
cipitate, the following assumptions were made in order
to simplify calculations [4, 6]:

— the precipitate is spherical
— each precipitate grows independent of others

a stationary diffusion state is reached

flux of atoms to the surface is described by the Fick’s
law

growth and dissolution of precipitates were assumed
to be controlled by the diffusion of the non — metallic
elements of precipitates in liquid steel

at the interface between the precipitate and the liquid
steel, only the concentrations of elements forming the
precipitate were considered

the non — metallic element concentration at the in-
terface between the precipitate and the liquid steel
was accepted O (for the growth) and equal to the
boundary dissolution value in steel (for dissolution)
precipitates are uniformly dispersed in the volume
precipitates grow at the expense of solute the non —
metallic element

growing leads to a steady — state size distribution of
precipitates
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3. Calculations

Calculations were performed by the means of the
finite difference method [7]. This method is based on
approximations that enable replacing a differential equa-
tion by a finite difference equation. Approximations have
an algebraic form, they combine the value of the depen-
dent variable at the certain point with values in several
neighbouring points.

Solving the problem by the finite difference method
consists of three steps:

1. Division of the solution region into the mesh of
nodes.

2. Approximation of a certain differential equation by
the equivalent difference equation, what corresponds
to the dependence of the dependent variable at the
point of a solution region to its value in neigbouring
points.

3. Solution of a difference equation that takes into con-
sideration initial and/or boundary conditions.

Approximation of a difference equation by the finite dif-

ferences method is as follows:

For a f(x) function it is possible to approximate its

derivative (slope/tangent) at the point P by three methods

(Fig. 1) 1.
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Fig. 1. Approximation of a function’s derivatives at the point xo, three
methods

1. By the slope of PB arc described as a difference of
functions:

Ax) —
f’(xO) ~ f(X() + A; f(xO)' (1)

2. By the slope of AP arc described as a reverse differ-
ence of functions:

~ flo—-A
f/(xo) o f(X()) .Z(':O X)' (2)

3. By the slope of AB arc given as a central difference
of functions:

f(xo + Ax) = f(xo — Ax)
2Ax )

f'(xo) = 3)

The second derivative f’(x) at point P can be approxi-
mated as:

f”(xO) = I (xo+Ax/2) - f' (x0—Ax/2) -

_ L (f(xo+Ax>—f(xo)Ai f)=ftzo-) “4)
Ax Ax Ax ¢
That is:
Ax) — -
F(x0) = (f(xo + Ax) 2jAr(xx20) + f(xo Ax)). )

The above interpretation of finite differences results
from a function’s expansion into Taylor series:

Jx+AX) = fO)+f X))+ (X)2+...= Z %(Ax)”.

n=0

(6)
Where elements of higher order derivatives are omit-
ted. As to find @ (x,t) function, the solution region in the
x —t plane is divided into rectangles of Ax and At sides
— the region of calculation is discretized by mesh nodes
with two coordinates — time and space [8]. By reducing
the space to one dimension, the space of calculations

time — distance is obtained (Fig.2).
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Fig. 2. Time and space discretization
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The f(x) function values at mesh nodes for ¢,,; cal-
culation step are determined on the basis of earlier de-
termined values for #, calculation step. Therefore, it is
necessary to know the mesh values for the initial time
to, so called initial conditions. Moreover, for some mesh
nodes the function fulfils boundary conditions (essential
or/and natural), which means that the function’s values or
its derivatives are fixed and known. Sometimes, (for ex-
ample in this paper), nodes’ coordinates may be changed
during calculations.

It has been assumed, that the processes of coagu-
lation and dissolution are described by the first Fick’s
law:

J = -DVC, @)



where:

J - flow of atoms (or molecules),
D - the diffusion coefficient,

VC - the gradient of concentration.

Diffusion is regarded as steady, when:

acC ocC
— =-D—. 8
ot ox ®)
Or not steady, when:
ac 0*C
A )

It has been assumed that diffusion is steady.

Generally, the variable x means a three — element
vector of coordinates in three — dimensional space. But
sometimes, due to symmetry, equation /8/ may have a
one — dimension form, (cartesian, cylindrical or spheri-

cal):
In 1D
2
Cartesian 6—C =0 (10)
ox?
Cylindrical 11
ylindrica - 8r[ ] (11
. Dad|,0C
Spherical = 6r 6r] =0. (12)

In the paper, there were accepted spherical coordi-
nates. In the formula /8/ derivatives of time and space,
(dC/dt, dC/dx) were discretized

ct-c’
oc ¢ -G 13)

ot At

N inclusion
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and
cl,-cl
ac i+1 i1 (1 4)
ax ~ 2Ax
Finally, the following formula was obtained:
. .
At 2Ax )

That enables determining concentrations values in
the net i, in the time step j + 1: C{“ on the basis of
values determined in the step j:

J J
2Ax

During calculations, the stability criterion has to be
fulfilled:

citacl (16)

(Ax)?

At < .
2D

a7

4. Results

In this paper, the growth of Al,O3 and TizOs pre-
cipitates in steel at 1873K and the dissolution of Al,O;
precipitates in steel at 2200K were calculated.

Calculations were carried out by the use of the finite
difference method and all assumptions presented above
were taken into consideration.

The area around an precipitate was divided into
spheres of radii r; and surface S;. (Fig. 3). In this area
a process of one precipitate’s coagulation or dissolution
take place. The radius of this area was calculated on the
basis of number of precipitates per volume.

Fig. 3. Discretized area around an inclusion

Values of standard free energies of reactions, sol-
ubility of products and diffusion coefficient of oxygen
were calculated from data presented in [6], whereas the
amount of oxygen taking part in a certain reaction was

accepted from [4]. The radii of areas, in which coagula-
tions take place are:

For A1203 = 0.64*10~*m
*107m

for Ti305: Iy = 1.14



1130

The number of precipitates in 1m? is:
For AL,O5 : 1.17*10!2 for TizOs: 6.7%101

The area around precipitate was divided into the
fixed number of elements limited by spheres, (S;, Sit1),
see figure 3, and during calculations, when the precipi-
tate’s dimension was changing (it was increasing for co-
agulation and decreasing for dissolution ), the distances
between spheres (d,), were changing as well (they de-
creased for coagulation and increased for dissolution).

The calculations were carried on in the Mathemat-
ica program. There was calculated the amount of the
non — metallic element moving from one mesh node to
the other (due to diffusion) and finally reaching the pre-
cipitate (for coagulation), which resulted in the growth
of precipitate. Moreover, the increments of precipitates’
masses (Fig. 4 and 5) and changes of precipitates’ radii
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Fig. 4. Increments of Al,0; inclusion’s mass at 1873K
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Fig. 5. Increments of Ti3Os inclusion’s mass at 1873K

(Fig. 6 and 7) were calculated. For the process of dissolu-
tion, the amount of non - metallic element moving from
precipitate was calculated. Figure 8 presents the decre-
ments of precipitate’s mass, whereas figure 9 presents
the decrease of the precipitate’s radius. The mesh node
‘i> was situated between surfaces S; and Si.;.
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Fig. 6. The dependence of Al,O; inclusion radii of time at 1873K
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Fig. 7. The dependence of Ti3Os inclusion radii of time at 1873K
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Fig. 8. Decrements of Al,O5 inclusion’s mass at 2200K
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Fig. 9. The dependence of Al,O; inclusion radii of time at 2200K

Calculations were finished when all oxygen in the
area was ‘consumed’ by an precipitate (for coagulation)
or the precipitate’s radius became one hundred times
smaller that the initial one (for dissolution).

Values of the times of precipitations’ growth or dis-
solution calculated by the finite difference method and
values calculated by Hong and DebRoy [6] are presented
in Table 1.

TABLE
Values of the times of precipitations’ growth or dissolution calculated by the finite difference method and values calculated by Hong and
DebRoy [6]
ipitation time [s] time [s]
Rreginang calculated literature data [6]
AL O; (growth) 4 4
Al,O; (dissolution) 2 2.5
Ti;Os (growth) 1 1.1




5. Summary

This paper presents a numerical approach to the
growth of and dissolution of precipitates calculations.
The results obtained in such a way are in good agreement
with values presented by Hong and DebRoy [6], that is
4 seconds for the growth, 2.5 seconds for the dissolution
of Al,O3 precipitates and 1.1 second for the growth of
Ti3Os precipitates. Therefore, the method proposed in
this paper, although quite simple and based only on well
known physical and chemical values may be a promising
one and is worth further investigations.

At the end, I would like to express my gratitude to
my colleagues from the Rzeszé6w University for the help
in operating the Mathematica program.
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