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It is demonstrated that topological constraints can be used to control the sign of the curvature of phase boundaries and
thus to preserve their shapes in the course of the thermodynamic optimization. In such a way, the unwanted or suspicious
inflection points on the phase boundaries may be avoided.
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1. Introduction

In order to apply computational thermodynamics
to real-life problems and trust its conclusions and pre-
dictions, reliable descriptions of the Gibbs energies of
phases in a system of interest must be built. In prac-
tice, these Gibbs energies are constructed via a two-step
procedure known as the CALPHAD (CALculation of
PHase Diagrams) method [1, 2]. Firstly, analytical ex-
pressions (models) containing unknown adjustable co-

efficients (models’ parameters) are assigned to phases .

whose Gibbs energies are to be built. Secondly, exper-
imental data on the thermodynamic properties of phas-
es and heterogeneous mixtures, and conditions of phase
equilibria are simultaneously treated within the frame-
work of a non-linear least-squares technique, which re-
sults in statistically optimal numerical values of a the
coefficients [3]. A crucial question is whether the Gibbs
energies yielded by the CALPHAD method can be em-
ployed in x — T — P regions in which experiments were
not carried out, i.e., in other words, whether they can be
extrapolated. Although there is no a rigorous answer to
this question, it is likely that if the choice of the models
reflected the structural and physical properties of cor-
responding phases, then a range of their applicability
would be wide. If, on the other hand, the choice was

*

prompted by a “mathematical convenience”, i.e., if an
aphysical formalism was used, then extrapolating may
lead to artifacts also known as post-optimization phan-
toms or unintended equilibria [4, 5]. Among such ar-
tifacts, inverted miscibility gaps in the liquid phase at
elevated temperatures are seen most frequently; the rea-
sons behind their appearance are well understood [6].
Recently, it was demonstrated that using the topological
constraints, the inverted miscibility gaps can be eliminat-
ed in the course of the thermodynamic assessment [7,
8]. In this work, the same idea is employed to struggle
against a different type of artifacts — suspicious inflection
points on phase boundaries.

2. Curvatures of phase boundaries

Before launching a battle against inflection points,
it is necessary to accentuate that in many cases, their
presence at concentration and temperature dependencies
of thermodynamic properties as well as phase bound-
aries is absolutely normal and anticipated. For instance,
a concentration dependence of the Raoultian activity of
a component in a binary non-ideal solution inevitably
has at least one inflection point. This conclusion instant-
ly follows from an attempt to draw a; (x;) connecting
the Henrian region where a; = y°x; with the Raoultian
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region in which da; / dx; = 1. The existence of the inflec-
tion point does not mean that its position can easily be
found. Let us consider a regular solution whose excess
Gibbs energy is described by G* = wx(1 - x). In order
to find abscissa(s) of inflection point(s) at the concen-
tration dependencies of the activities, one has to solve
the equations d’a, / dx?> = 0 and d’a, / dx* = 0. Re-
calling that for the regular solution a; =(1 - x Yexp(ax?)
and a, = xexp(a(l - x)?), where @ = w/(RT), one can
simplify these equations to 2ax? (1 —x) - 3x+1 =0
and 2ax(1 - x)> + 3x — 2 = 0. Let us notice that even
in a very simple case of the regular solution, the cu-
bic equations have been arrived at. If G** is described
by more sophisticated expressions, then the correspond-
ing equations would be either difficult or impossible to
solve algebraically. It can be concluded that determin-
ing a number of inflection points and their positions
at concentration and temperature dependencies of in-
tegral and partial thermodynamic properties is a com-
plicated problem whose solution should almost always
be sought for numerically. As shown below, in the case
of phase boundaries, a corresponding problem becomes
even more intricate.

Since an inflection point is the point at which the
curvature of a phase boundary changes its sign, it is
necessary to calculate the curvature. It is shown in [9]
that even in the simplest case when a binary solution is
in equilibrium with a binary stoichiometric compound,
the expression for the curvature turns is so cumbersome
that it can be dealt with only numerically. It is worth
noticing that the calculation of the curvature necessitates
computing the molar Gibbs energy of the solution and its
eight partial derivatives. Five of these derivatives, name-
ly 8G/dx, dG/OT, 8*G/dxdT, 8*G/0T? and 8>°G/Ox6T?,
can be associated with certain thermodynamic properties
(for example 8>G/0xAT?* can be related to partial mo-
lar heat capacities). Three remaining derivatives, namely
8°G/dx?, 83G/ox® and 8°G/dx*AT, cannot be linked to
measurable properties. Consequently, the curvature of
the phase boundary cannot be directly derived from ex-
perimental observations only; a thermodynamic model
of the phase is required as well. It can be concluded
that while the curvature of a phase boundary is calcu-
lable if the Gibbs energies of two phases co-existing
along it are known (the case when these phases are both
binary solutions is considered in the Appendix), there
are no simple analytical answers to the questions “What
is the total number of inflection points?” and “Where
are they located?” An inability to deal with the inflec-
tion points on phase boundaries in a rigorous manner
brings another complication. Let us imagine an undulate
phase boundary (or its metastable continuation), i.e., the
boundary with one or several inflection points. From the

thermodynamic viewpoint, a wavy boundary is not il-
legal; it usually indicates that the excess entropy of at
least one of the coexisting phases strongly depends on
temperature. Let us now focus on a particular inflec-
tion point. Is it physically feasible, or is it an artifact
resulting from inappropriate phase models stemming, in
turn, from the CALPHAD method? In many cases, the
existence of the inflection point is fully justified. If, for
instance, the liquid phase has a metastable miscibility
gap below liquidus, then a corresponding liquidus line
may possess an inflection point, which abscissa is close
to (but not necessarily coincides with) the abscissa of
the top of the immiscibility cupola. Inflection points may
appear even if all phases participating in equilibrium are
internally stable. It is shown in [9] that when the ideal
liquid solution is in equilibrium with a stoichiometric
compound, an undulate liquidus is favored by a small
entropy of fusion of the compound. In general, howev-
er, the thermodynamic arguments may be insufficient to
judge whether the particular inflection point is somewhat
real and normal, or it is a post-optimization phantom.
Apparently, non-thermodynamic rationales related to the
shape of the phase boundary should be invoked.

3. Geometric structure of functions

Experiments to measure the thermodynamic proper-
ties of phases and heterogeneous mixtures, or to find the
conditions of phase equilibria inevitably result in dis-
crete quantities. Imagine, for instance, that a differential
thermal analysis is employed to establish the location
of liquidus in a binary system. In general, liquidus is
composed of smooth curves corresponding to various
primary precipitates. It can be shown that a T (x) curve
corresponding to a particular primary solidification re-
gion is twice continuously differentiable. By investigat-
ing melts of different compositions, one ends up with
a table x;, Ax;, T;, AT;, i = 1,...,n, which is a discrete
representation of the smooth function T (x). Let us recall
that any smooth function has its own shape, which is also
named topology or geometric structure. More specifical-
ly, a twice continuously differentiable function is char-
acterized by regions of increase and decrease, regions
of convexity and concavity. The number and sequence
of these regions define its shape. Let us consider the
function shown in Figure 1a. By looking at the plot, one
instantly concludes that it has two extrema and three in-
flection points. It is important to realize that for reaching
that verdict, it was not even necessary to know that the
function was actually x exp (- x2/8). Now let us choose
a certain number of points randomly spread over the (-
8,8) interval and calculate exact function’s values at these
points. By inspecting the discrete representation of the



function, Figure 1b, one is still able to conclude rather
confidently that there are 2 extrema and 3 inflection
points. This ability to recognize the function’s topology
hinges on the fact that there are many randomly selected
points. As Figure lc suggests, the lesser their number,
the harder to judge on the shape of the function. An-
other reason which may cause difficulties in identifying
the geometric structure is noisy data. It is apparent from
Figures 1d-1f that if the Gaussian noise intensifies, then
sooner or later nothing valid can be said about the toplo-
gy of the function represented by discrete data points.
Fortunately, in many cases, both a number of experi-
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mental points related to a thermodynamic property or a
phase boundary and the accuracy of the measurements
are sufficient to quantify their geometric structures. It can
be argued that sometimes it might be difficult to agree
upon the geometric structure, that an analysis of visual-
ized data performed by different individuals may result
in diverse opinions. Let us realize, however, that exactly
the same argument is applicable to any human-dependent
estimation. If, for instance, different experts are asked to
characterize systematic and random errors of EMF mea-
surements reported in a particular publication, then their
estimations will hardly coincide.
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Fig. 1. a A twice continuously differentiable function, which geometric structure (2 extrema and 3 inflection points) is obvious b A discrete
representation of the smooth function still allows a confident determination of its geometric structure ¢ A small number of data points makes
it difficult or even impossible to rule on the function’s topology d-f The greater the noise, the more difficult to judge on the geometric

structure

If the geometric structure is not apparent from
data visualization, then there is no need in invoking
a shape-preserving optimization, but if the geometric
structure is determinable and determined, then it would
be advantageous to take it into account. Mathematically,
it means that instead of an unconstrained least-squares
problem, one formulates and solves a constrained prob-
lem. The objective function is still a sum of weighted
residuals between experimental quantities and their cal-
culated counterparts, which means that attention is still
paid to the accuracy of description. At the same time, by
satisfying topological constraints controlling the shapes
of properties and phase boundaries the correctness of a
description is assured. In the next section, it is demon-

strated how this approach can be implemented in prac-
tice.

It would be pertinent to mention that a usefulness
of shape-preserving interpolation and approximation was
comprehended by mathematicians while ago, and that
corresponding algorithms were originated [10-12]. Un-
fortunately, those elegant methods work only if splines
[13, 14] are chosen as functions interpolating or ap-
proximating experimental data. Despite an attempt to
attract the attention of the CALPHAD community to
cubic splines [15], they have not gained popularity in
computational thermodynamics so far.
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4. Example of a shape-preserving thermodynamic
assessment

In 1997, Degterov, Pelton and L’Ecuyer published
a thermodynamic assessment of the Se-As system [16].
It was an outstanding work in many respects. Firstly,
the authors critically analyzed all available calorimetric
and phase diagram data and sagaciously concluded that
Ass Seq melted congruently. That conclusion could not

be reached by taking into account only the conditions of
phase equilibria. Secondly, in addition to the descriptions
of the properties of the condensed phases, Degterov et
al. reported the thermodynamic properties of all gaseous
species. Thirdly, their thermodynamic model provided a
very good agreement between experimental and calcu-
lated quantities. The phase diagram captured from [16]
is shown in Figure 2. Two things are worth noticing.

Temperature/°C

0.0 02 0.4

Se

Mole fraction As

08 1.0

Fig. 2. The phase diagram of the Se-As system resulted from the thermodynamic description of the system proposed in {16]

Firstly, the calculated Se+L/L liquidus is situated far
from experimental points obtained in [17] and [18], but
this is not a deficiency of the thermodynamic model of
the liquid phase. In order to show this, let us recall that
since a solid-sate solubility of arsenic in selenium is very
small, the slope of the liquidus dT / dx near pure seleni-
um can be calculated as — RTy, / AnS, where Ty, = 494
K is the melting point of Se and Ap,S = 13.5514 J /(K X
mole) is its entropy of fusion [19]. By using these values,
one arrives at dT / dx ~ —303K. Since this slope is much
steeper than those in [17, 18], it can be guessed that the
experimental points are burdened with a systematic er-
ror and that, therefore, cannot be trusted. The most likely
source of the error is that Se-As melts with x < 0.6 are
prone to forming glass, which gravely complicates a de-
termination of equilibrium liquidus temperatures within
this range.

Secondly, the calculated L/L+As liquidus is undu-
late: it has two inflection points with x ~ 0.81 and
x ~ 0.96. As Figure 3 illustrates, the left inflection point
is linked to a metastable miscibility gap in the liquid
phase. This wavy phase boundary does not mean that the
thermodynamic description of the liquid phase proposed
in [16] is inadequate. A poor accuracy of experimental
data and significant differences in the outcomes of the
investigations [20] and [21] do not allow one to judge
whether the L/L+As liquidus should have one or several
inflection points or be completely free of them. Let us
notice, however, that if the results of [20] and [21] are
analyzed separately, then none of the works suggests that
phase boundary is undulate. It is possible that the inflec-
tion points appeared, because in [16] data from [20] and
[21] were treated simultaneously.
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Fig. 3. An undulate L/L+As liquidus is related to a metastable miscibility gap in the liquid phase

Another possible cause of the undulation is that as

5 .
G"=(1=-x) Y ¥ XL;=x(1-x)
j=1

Ly = —85130.7 + 273.7495T - 34TInT L, = 59661

L4 = 1341023.1 - 10.9083T

It is understood that such a large number of model’s
parameters was needed in order to achieve a good agree-
ment between the calculated and experimental quantities,
but it could happen that the correctness of the description
was sacrificed (at least partially) for its accuracy. Instead
of continuing these speculations, which, in view of a lack
of reliable experimental information on the position of
the L/L+As liquidus are senseless and fruitless, let us for-
mulate the following question: Is it in principle possible
to optimize the Se-As system in such a manner that this
particular liquidus line would be free of inflection point?
It should be emphasized that the calculations outlined in
this work were attempted not because the quality of the
assessment [16] is doubtful. It was undertaken in order
to demonstrate that topological constraints introduced in
{7, 8] are useful not only for eliminating inverted misci-
bility gaps, but for suppressing undulations along phase
boundaries if such a suppression is warranted by the
outcome of the unconstrained minimization technique
adopted in the traditional CALPHAD method.

An array of experimental data the re-optimization
was based upon coincided with that used by Degterov

many as 8 coefficients were used in the expression for
the excess Gibbs energy of the liquid phase:

5

XU L
& )
L; = -680611.9
Ls = -717983.1

et al. Instead of using raw data on invariant equilibria,
it was decided to rely upon values computed in [16]. In
other words, it was decided to “nail” a phase diagram
that would result from a new method to the following
characteristics: eutectic L — Se + Se; As,, T = 42042
K, x = 0.1950; distectic L — Se; As;, T = 643.63
K; eutectic L — Ses As; + Seq Asy, T = 569.69 K,
x = 0.4806; distectic L — Seyq Asq, T = 573.54 K;
eutectic L — Seq Asy + As, T = 52191 K, x = 0.5736;
peritectoid Se; Asy — Seq Asq + As, T =399.99 K
The minimization problem was formulated in a habitual
CALPHAD fashion:

m
Z wi P?xpenmental il P;:a]culated (éPhasel 4 C’v'PhaseK,. )) — min,

i=1

2
where m is a number of experimental points, w; is the
statistical weight of the i - th measurement, P is a prop-
erty, C is the vector of unknown parameters in the ex-
pression for the excess Gibbs energy of a corresponding
phase, K; is a number of phases participating in a corre-
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sponding equilibrium. The shape of the L/L+As liquidus
was directly controlled via topological constraints. In or-
der to employ such constraints in practice, an artificial
mesh of knots must be introduced. Since the position
of the eutectic point L — Ses Asq + As is known, the
liquidus line of interest stretches from x ~ 0.57 to x = 1.
Within this interval, 42 knots were chosen: z; = 0.58,
22 =0.59,..., z4o0 = 0.99. At each knot, liquidus temper-
ature was calculated. In general, that temperature could
be compared with nothing, because it is not guaranteed
that liquidus temperature was experimentally measured
for this composition. Then, the slope d7 / dx was cal-
culated. Finally, the curvature d?T / dx?> was computed.
Of course, there is nothing the numerical value of the
curvature can be compared with, but such comparison is
not needed! What is needed is its sign only, which must
be negative, because it is intended to make the whole
liquidus L/L+As convex upward. Thus the topological
constraints employed in this work are:

(A*T/dx?)sey, <0, i=1,2,... 3)

It is difficult to give an unambiguous recommenda-
tion on a suitable density of the mesh. Apparently, the
mesh must be dense enough to avoid an appearance of an
inflection point between two adjacent knots. A seemingly
excessive number of knots should not be considered as
somewhat harmful and slowing the computations down,
because usually only a fraction of the topological con-
straints is active. Moreover, from the algorithmic end,
a dense mesh does not significantly increase a compu-
tational complexity of the minimization problem. Expe-
rience gained suggests that a mesh of equidistant knots
with the step z;+1 — z; < 0.01 works almost always.

It should be pointed out that the proposed type of
optimization cannot be performed by using the PAR-
ROT module [22] of Thermo-Calc, because this software
package cannot compute the second derivatives. In order
to carry out the topologically-constrained optimization in
practice, a Fortran 90 program was written. The heart of
this “home-grown optimizer” is the sequential quadratic
programming method with augmented Lagrangian line
search function developed by Klaus Schittkowski [23].

Before commencing the re-optimization of the
Se-As system, it was necessary to decide what particular
model or formalism should be used for representing the
excess Gibbs energy of the liquid phase. The properties
of the components insinuate that a variety of associates
may exist in the Se-As melt and that their presence is
especially pronounced in a Se-rich liquid phase. From
this angle, it would be natural to try the associate so-
lution model [24, 25]. However, one of the purposes of
this contribution is to demonstrate that the topological
constraints can be used to arrive at the desired shape of a

phase boundary even if not a physically feasible model,
but an aphysical formalism is in play. The shape-related
constraints do not inhale a physical sense into the formal-
ism, indeed, but they may make the outcome of its uti-
lization more reliable and trustworthy. It was decided to
adhere to the polynomial spirit of the description of the
excess Gibbs energy employed in [16]. That description
is not in the Redlich-Kister format, which was incorpo-
rated in the optimizer mentioned above. This seems to be

an immaterial issue, because G* = x(1 — x) Z ai(T)x'
i=0

and G* = x(1 — x) E Bi(T)(1 - 2x)' are algebraically

equivalent, which 1mp11es that (1) can be converted into
the canonical Redlich-Kister expression. Let us see how
such a conversion can be made for the case in hand.
According to [16]:

Gex/(X(l - .X)) =An + BT+ C]]Tll’lT +xA;p + x2A13
+x3A14 + X3TBl4 + x4A15.

)

Let us absentmindedly replace all x with 1 - 2x and

introduce a new set of coefficients & and ﬁ instead of

the old set A and B (the term C;;T In T must be left
intact, indeed):

Ge"/(x(l - x)=a/11 +ﬁ11T+ C“TInT + (1
+(1

- 2x)a12
- 2xY%a13 + (1 = 2x) 314 + (1 = 2)’TBys
+(1 = 2x)*ays.
)

By comparing the coefficients at corresponding ba-
sis functions in (4) and (5), it can be concluded that
-6B14xT +12B14x*T must be identical with zero, i.e., that
B4 = 0. The absurdity of this requirement evidences that
an artless substitution of x with 1 - 2x was not a par-
ticularly bright idea. It is clear that in order to translate
(4) into the Redlich-Kister format, extra terms are to be
added to (5):

G®*/(x(1 —x) = ay; +6uT + CiiTInT + (1 — 2x)ay,
+(1 =2x)TB12 +(1 - 2x)20’13 +(1- 2x)2T/313
+(1 =21 + (1 = 2x)°TBis + (1 — 2x)*ays.
6
A comparison of the coefficients at correspondi(n;
basis functions in (4) and (6) leads to the conclusion
that the coefficients in (6) are not linearly independent,
because the following two conditions must be satisfied:

Bz +2B13+3B14 =0 ¢))

B3 +3B1a=0 8



Although (7) and (8) can be taken into account in the
optimizer developed, these two linear dependencies ex-
isting between the coefficients were deliberately ignored.
By disregarding those interrelationships, a number of
adjustable parameters was increased from eight to ten.
If it is conjectured that the model for the liquid phase
proposed in [16] suffered from overfitting, then two ad-
ditional terms make the situation even worse. Such state
of affairs would be inadmissible, of course, in the case
of a non-constrained minimization problem. As will be
seen later, by activating the topological constraints, one
can overcome an adverse effect of overfitting.

Re-optimization of the Se-As system with the con-
straints (3) led to the phase diagram depicted in Figure
4. Although the entire L/L+As liquidus is now convex
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upward, there is an inverted miscibility gap in the lig-
uid phase, which is by far a much more horrible arti-
fact than an undulate liquidus! Fortunately, it has been
demonstrated how to use the topological constraints to
eliminate inverted miscibility gaps in the course of opti-
mization [7, 8]. That approach was implemented in the
present work by introducing a 2D mesh of knots and de-
manding that the liquid phase must be internally stable at
each of these knots. Specifically, four temperatures were
chosen: 673.15, 873.15, 1073.15 and 1273.15 K. For
each temperature, ninety-nine mole fractions of As were
taken: 0.01, 0.02,..., 0.99. At each of 396 knots, it was
required that the liquid phase is not prone to separation,
i.e. that
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Fig. 4. Although the entire L/L+As liquidus had been made convex upward, a detrimental artifact appeared on the phase diagram

>0, i=1,..

T,‘,X J

2
(;%z’(cld +Ge*)) w4i=1,..,99. (9

It is worth repeating that in spite of a large number
of knots, the constraints were likely operative only in a
fraction of them.

In Figure 5, the phase diagram resulted from the
solution of the minimization problem (2) with two types
of topological constraints, (3) and (9), is compared with
the diagram from [16]. It is seen that the two phase dia-
grams are very similar to each other except the position
and shape of the L/L+As liquidus. The Gibbs energies of
formation of the stoichiometric compounds As; Ses, Asy
Se4 and As4 Sej are close to those reported by Degterov

et al. In fact, a new thermodynamic description of the
Se-As system is not drastically different from that sug-
gested in [16]. The only principal disparity in the upward
convexity of the liquidus line connecting the L — Seq4
Asg + As eutectic point and the point of As melting.
Despite a frequent usage of the term
“re-optimization”, this work is not aimed at getting a
better description of the Se-As system; this work is
not indented to discredit the assessment of this system
proposed in 1997. The major purpose of this research is
to introduce a straightforward method capable of elimi-
nating unwanted or suspicious inflection points at phase
boundaries as well as at their metastable continuations
during a thermodynamic optimization. A pronouncedly
undulate liquidus line in the phase diagram of the Se-As
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system made this system a convenient entity to apply the

method to. A successful alteration of the excess Gibbs
energy of the liquid phase allows one to hope that happy

1100 | | 1 |

outcomes will be achieved in many other cases when a
wavy nature of phase boundaries is less pronounced.
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Fig. 5. The phase diagram of the Se-As system (solid lines) resulting from the thermodynamic optimization under topological constraints is
very close to that obtained from the traditional CALPHAD method (dashed lines) except the shape and position of the L/L+As liquidus

5. Conclusions

A usage of convenient mathematical formalisms
(e.g. Redlich-Kister polynomials) instead of physically
feasible models (e.g. the model of partially ionic liquids
[26, 27] or a multi-sublattice model [28, 29]) for the ex-
cess Gibbs energies of phases may lead to deficiencies
in their thermodynamic descriptions resulted from the
CALPHAD method. These deficiencies manifest them-
selves in various aphysical artifacts [4, 5]. Undoubtedly,
the best way to combat them is to employ physically
sound models reflecting the properties of the phases. In
particular, it is of a paramount importance to take into
account the crystallography of solid phases [30-32]. In
the case of liquids, a possible formation of associates
should not be overlooked. Unfortunately, many phases
are so complex (according to [33], a monoclinic unit cell
of Cug sDy contains more than 7000 atoms!) or so poorly
investigated that the usage of formalisms can hardly be
avoided in a foreseeable future.

A pain of getting post-optimization phantoms can
be alleviated or even completely subdued by using topo-
logical constraints imposed not at experimental data
points, but at knots belonging to a specially construct-
ed mesh (or, if necessary, a number of overlapping
or non-overlapping meshes). These constraints reflect

knowledge about a system of interest, which goes be-
yond the location of discrete experimental points, i.e.,
beyond metrics. By means of a “topological enforce-
ment” one can pass, for example, such knowledge as
“The liquid phase is not prone to separation within a
certain x—T range” or “This solid phase cannot reappear
above particular temperature” or “Enthalpy of mixing is
always negative and ApixH(x) does not have inflection
points” or even “This phase boundary is convex down-
ward if 0.13 < x < 0.37 and convex downward if 0.44
< x < 0.6” to a program tailored for the thermodynamic
assessment. This approach does not make inventing of
new good physical models redundant, indeed, but it pro-
vides a much needed balance between the accuracy of a
thermodynamic description of a system and its correct-
ness.

Although both here and in [7, 8] a potential of the
topological optimization was illustrated on binary cases
only, it is conceptually straightforward to generalize the
procedure to multicomponent systems.

Despite their apparent usefulness, the shape-related
constraints are still considered as somewhat exotic; they
are seldom invoked in the course of optimization. The
situation will never change unless it becomes possible
to use them from within such widely used programs as
PARROT [22] and OptiSage [34, 35]. It is naive to ex-



pect that the “home-grown optimizer” developed within
the framework of this contribution for illustrative purpos-
es only will ever evolve into a full-fledged software pack-
age incorporating numerous models and formalisms and
providing convenient visualization, i.e., into the package
with the features that PARROT and OptiSage already
have.

Appendix

If a binary liquid solution, L, and a binary solid
solution, S, are in equilibrium, then the following con-
ditions are fulfilled:

Fi(x“,x5,T) = G — x125- - ngfj =0
Foxl, a8, T) = GU + (1 - 2485 -G8 - (1 - x5%%
(10)
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Since F; and F, remain equal to zero if the equilib-
rium is maintained, one can use implicit differentiation
to arrive at:

OF;dx* OF; OF; dT
9xSdxL = 8T dxt

OF;

O;(x", x5, 1) = FP

=0,i=1,2.
(11)
By realizing that (11) is a system of linear equations
with respect to dx5 / dx and d7 / dx! and by solving
it, one gets dT / dx", i.e., the slope of liquidus.
Since ®, and @, also remain equal to zero if the
phases stay in equilibrium, one can continue using im-
plicit differentiation for arriving at:

00; 0d;dx’ 6®; dT

P i i _0i=1,2
oxt  oxSdxt AT dxb 0.1

(12)

By recollecting how are defined in (11), one can
rewrite (12) as:

0_(9F, OF 4s° OF AT\ 0 (OF, OF &3 OF,dT &%)\ 0 (OF, OF, & OF,dT\dTl .
AxL \GxL " xS dxL 0T dxL [ 9xS \GxL ™~ 9xSdxl~ OT dxLdxL [ 8T \AxL " 8xS dxL " OT dxl ) dxt
(13)
By taking partial derivatives and keeping in mind that 6°F; / 6x"3x5 = 0, one can rearrange (13) to a
handy form:
OF; x° OF; &T &F ,dT &F; ? 8F;  diS dT &°F; SN SR, a4
xS dLy2 T BT (L2 OGL)? | daL oxtaT de 8G5)? il dxL 6x59T \dxL) 9r2 T ®
Since dx5 / dx* and dT / dx" have been already Acknowledgements

computed from (11), (14) is a system of linear equations
with respect to d2x5 / d(x“)? and d?T / d(x")2.

There is no need to repeat this tiresome sequence
of actions to find the curvature of solidus, it can be
calculated from the quantities already known:

ar \ J(dxSY’

ey )

A rather generic system of equations (14) becomes
specific if particular models G* and G® seen in (10) are
made use of.

While calculating slopes and curvatures of phase
boundaries, one may encounter a number of interesting

complications, but their discussion is beyond the scope
of this contribution.

dx® d*r

f"aCdsz(.xS)2 = (@m
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