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GLASS TRANSITION STUDIED BY CLUSTER VARIATION METHOD

ANALIZA PRZEMIANY W SZKLO METALICZNE Z ZASTOSOWANIEM METODY WARIACJI KLASTEROW

Thermodynamics and kinetics frameworks of Glass transition are studied by Cluster Variation and Path probability
Methods. Generalized phase diagram and cooling curve obtained by these calculations reproduce the essential features of the
glass transition. These results are compared with the ones obtained from free energy model by Granato. The extension of the
present model to incorporate structural information of glass by Continuous Displacement Cluster Variation Method is briefly
discussed.

Keywords: glass transition, Cluster Variation Method, Path Probability Method, ideal glass transition temperature, Con-
tinuous Displacement Cluster Variation method

Analizowane s3 ramowe opracowania termodynamiki i kinetyki przemiany w szklo metaliczne z zastosowaniem metody
wariacji klasteréw oraz metody §ciezki prawdopodobieristwa. Uog6lniony diagram fazowy i krizywa stygni¢cia uzykane tymi
metodami obliczeniowymi odtwarzajg istotne cechy przemiany w szklo metaliczne. Wyniki te sa skonfrontowane z tymi jakie
otrzymuje si¢ z modelu energii swobodnych opracowanego przez Granato. Krétko oméwiono rozwinigcie prezentowanego
modelu celem wlaczenia go do informacji strukturalnych o szkle metalicznym przy zastosowaniu metody Ciaglego Zastgpowania

Metody Wariacji Kalsteréw.

1. Introduction

Bulk Metallic Glass (BMG) has been attracting
broad attentions for its superior mechanical, physical and
anti-corrosion properties. Most of the studies on BMG,
however, have been directed towards the development of
a new class of BMG with better properties, and theoret-
ical investigation of thermodynamic stabilities and their
correlation with atomistic structures are still behind the
satisfactory level.

Cluster Variation Method (hereafter CVM) [1] has
been recognized as one of the most reliable theoretical
tools in dealing with phase equlibria of a given alloy,
and by combining with electronic structure total energy
calculations, even first-principles studies of alloy phase
equilibria have been successfully attempted [2].

Recently, one of the authors (TM) [3-6] has been
attempting to extend the CVM to describe thermody-
namics of Crystal-Glass (CG) transition, and calculated
results were well summarized in the generalized phase
diagram in which relevant stable and metastable phases
are displayed along with loci of various characteristic

*

temperatures. It has been also found that the ideal glass
transition temperature is equivalent to the spinodal or-
dering temperature in the Order-Disorder (OD) transi-
tion. The essential distinction between spinodal ordering
and glass transition, however, is emphasized in the con-
text of kinetics which plays an essential role in the latter
transition.

One of the advantageous features of the CVM is the
expandability to kinetics. In fact, Kikuchi devised Path
Probability Method (hereafter PPM) [7] as the natural
extension of the CVM to time domain and various or-
dering and relaxation kinetics towards equilibrium state
have been investigated by combining CVM and PPM
[2]. One of the present authors (TM) employed PPM to
investigate cooling behavior of CG system and showed
that the order parameter which characterizes the state
of the system is frozen as approaching the ideal glass
transition temperature [8]. Thereby, both the thermody-
namics and kinetics frameworks of CG transition are
consistently described by the CVM and PPM.

A deficiency of the conventional CVM has been
pointed out in dealing with OD system. When the mix-
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ture of two kinds of species with large difference in
atomic size is dealt, OD transition temperatures are con-
siderably overestimated. Such inconvenience is ascribed
to the neglect of local lattice distortion effects in the
conventional CVM. In fact, in the conventional CVM,
the Bravais lattice symmetry is assumed to be main-
tained everywhere in the lattice, and only uniform ex-
pansion/contraction is allowed. In order to overcome the
inconveniences, Continuous Displacement CVM (CD-
CVM) has been developed by Kikuchi [9] as the exten-
sion of his study of liquid phase. In the CDCVM, atoms
are allowed to displace to off-Bravais lattice point, lead-
ing to the reduction of the internal energy.

The capability of incorporating the additional free-
dom of atomic displacements implies that a geometrical-
ly disordered system in addition to the configurationally
disordered phase can be handled. In fact, the motiva-
tion of the application of CDCVM to CG transition is
ascribed to this point. Hence, in addition to the studies
of thermodynamics and kinetics of CG transition, one
would explore the structural aspects of the glass, namely
the local atomic arrangements. Although the actual ap-
plication of the CDCVM to CG transition is still away
from the satisfactory level, various preliminary calcula-
tions on a two dimensional system has been attempted
[10-14].

In the present report, CVM studies of CG transi-
tion performed by the auhtors’ group are reviewed. The
organization of the present report is as follows. In the
next section, theoretical frameworks of the CVM and
the application to CG transition is introduced. In the
third section, kinetics studies of the CG transition by
PPM is outlined. Two major results are reproduced from
the previous studies; one is a generalized phase diagram
[3-6] by the CVM and the other is the cooling curve
[8] obtained by the PPM. In the fourth section, the free
energy model of CG transition by Granato [15] which
has a versatile applicability is introduced and caiculated
results based on the free energy are compared with the
ones by CVM. Then, in the final section, CDCVM is
introduced and its implication to the future studies of
CG transition is discussed.

2. Thermodynamics of CG transition and Cluster
Variation Method

The basic idea of the Cluster Variation Method
(CVM) is to approximate the configurational freedom
of atomic arrangement with a finite set of atomic clus-
ters. The accuracy of the CVM is generally determined
by the largest cluster, basic cluster, involved in the free
energy. In the conventional applications of the CVM for
fcc-based systems, a common practice is to employ tetra-

hedron approximation [16] in which nearest neighbor
tetrahedron cluster is adopted as a basic cluster and the
free energy of a L1y ordered phase, for instance, is given
by
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where x;, y;; and w;j; are cluster probabilities of find-
ing atomic arrangement specified by subscript(s) on a
point, pair and tetrahedron clusters, respectively, the su-
perscripts @ and 8 specify the sublattices, kp the Boltz-
mann constant, T the temperature, N the total number of
lattice point, and e;; is the atomic pair interaction energy
between species i and j. It should be emphasized that
the choice of the L1, ordered phase for the free energy
of the present study does not have any significant mean-
ing except that the L1o-disorder transition is of the first
order which is the basic requirement for the study of the
liquid crystalline transition. In fact, the configurational
information of the L1y ordered phase arising from short
range orders described by pair and tetrahedron cluster
probabilities are smeared out as will be seen shortly.

It has been amply demonstrated that the cluster prob-
abilities are mutually dependent through normalization
and geometrical conditions, and it is more convenient
to employ correlation functions [2] instead of cluster
probabilities, since correlation functions form a set of
independent configurational variables. Hence, the free
energy formula given above is formally rewritten as
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where &; is the i-body correlation function and the super-
script indicates sublattice(s). The number of independent
correlation functions are reduced due to the symmetry of

the L1j ordered phase which claims fﬂ & B
and §«3:/3/3 §§mﬂ at a fixed 1:1 st01ch10metr1c compos1-

tion. Hence, the final form of the free energy is written
as

FLIO =F (T, §a’ gd,gﬂ’ﬂ’fgdﬂ’ é_-:ﬂﬁﬁ) .
Among these five correlation functions, the point corre-
lation function, &7(= x§ — xﬁ), serves as a Long Range
Order parameter (LRO), while the rest of the correlation
functions are Short Range Order parameters (SRO).
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By minimizing the free energy, F'°, with respect to
all the SRO parameters for a given set of 7 and £, one
obtains the free energy expression formally given by,

FH0 = £(T,n), @)

where point correlation function £§ in eq.(3) is replaced
by n. It is noted that n represents an amount of defects
which induce crystal liquid transition, and n = 0.0 and
1.0 are assigned to perfect solid and liquid phases, re-
spectively, while the finite value of 7 suggests a defective
crystal.

The calculated results are summarized in the gen-
eralized phase diagram shown in Fig.1[5,6] which indi-
cates free energy contour lines, and stable regions of lig-
uid (L), crystal (C), super-cooled liquid (SCL) and glass
(G) are identified between the temperature loci of free
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energy minimum (7,,), free energy maximum (7 peqt),
and T temperature. The temperature axis is normalized
with respect to the melting temperature, T, at which
the free energies of crystal and liquid becomes identical.
The horizontal axis, n, represents the amount of defects
as mentioned above. The essential quantity in CG transi-
tion is the ideal glass transition temperature, Tk, which
was identified to be equivalent to the spinodal ordering
temperature [17,18] of OD transition and is determined
to be 0.861 at n = 0.976 at which the entropies of liquid
phase becomes identical with that of the defective crys-
tal (7=0.976), and a tri-critical point is formed in the
generalized phase diagram. It is worth pointing out that
Ty, is the temperature at which the free energies of liquid
and defective crystal become equivalent, hence the locus
of Ty in Fig.1 can be seen as the melting temperature of
a defective crystal characterized by 7.

0.6

Fig. 1. Generalized phase diagram. L, C, SCL and G indicate liquid, crystal, super-cooled liquid and glass regions, respectively. Teq is the
locus of minimum of the free energy at each temperature, T, is the melting temperature by which the temperature axis is normalized,
T pear is the locus of maximum of free energy at each temperature and the free energy of a defective crystal becomes equivalent with that of

liquid at Ty. Tk is the ideal glass transition temperature[5,6]

3. Kinetics of CG transition and Path Probability
Method

As was mentioned in the Introduction, Path Proba-
bility Method (PPM) was devised as the natural exten-
sion of the Cluster Variation Method to time domain.
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Hence, there are correspondences of key quantities ap-
pearing in CVM and PPM. The counter part of the free
energy of the CVM is the Path Probability Function
(PPF), P, in PPM which is given as the product of the
following three terms,

&)
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where 6 is the spin flipping probability per unit time that
may correspond to the diffusivity of an alloy system, and
AE is the change of the internal energy during the time
interval Az given by
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where w”° is the degeneracy factor of each pair which is
equivalent to the coefficient of pair probability in eq.(1).
X j» Xjx and W;jk mnop are path variables for point, pair
and tetrahedron clusters, which describe the time transi-
tion of the spin (atom) configuration on the sublattices
specified in the sub- and superscripts, respectively. It
is noted that path variables are the key configurational
variables corresponding to cluster probabilities of the
CVM.

In the PPF, the first term, P;, describes the proba-
bility of non-correlated spin flipping (atomic exchange)
events over the entire lattice points, the second term,
P,, is the thermal activation probability before and after
the flipping (exchange) events, while the third term, Ps,
which is similar to the configurational entropy of CVM
given by the second term in eq.(1) describes the free-
dom of transition path. Then, PPM claims that the most
probable path of the time evolution is determined so that
the Path Probability Function is maximized, which is the
variational principle corresponding to the minimization
criterion of free energy in the CVM.
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It is emphasized that the glass transition is driven
by the enhanced viscosity with decreasing the temper-
ature, which is not thermodynamic phenomenon but is
essentially the kinetics phenomenon. In the PPF, the spin
flipping probability € controls the elementary process of
kinetics, and in the PPM studies of CG transition was
assumed to be inversely proportional to the viscosity, pu,
given by

o=c.L, ©)
1)

where C is a constant. Furthermore, in order to in-
troduce the temperature dependence of the viscosity, fol-
lowing Vogel-Fulcher-Tamman equation[19] is assumed,

B
,uzzyoexp(T_TK), (10)

where both gy and B are materials constants.

One of the calculated cooling behavior of order pa-
rameters for three kinds of cooling rates are reproduced
in Fig.2 [8]. The cooling rate R is normalized with re-
spect to 6 - At. One sees that as the ideal glass transi-
tion temperature (Tx = 0.861 see Fig.1) is approached,
the viscosity abruptly increases and the order parameter
is gradually locked without proceeding to the equilibri-
um value predicted in the generalized phase diagram in
Fig.1. This simulates the kinetics of glass transition.
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Fig. 2. Temperature dependences of order parameter at three kinds of cooling rate, 0.0008, 0.00053 and 0.0004. The initial state of the
system is highly defective crystal just below the melting temperature. The temperature dependence of the viscosity in the present simulation

is also indicated [8]

4. Granato free energy model for glass transition

It was Granato [15] that provided one of the most
versatile free energy expressions to describe the CG tran-

y=x-[(1-q)-(55) +4]
~tx-[6ay-(y-14)- % {0-9

The above free energy formula was derived for fcc
metals and Granato claimed this is a unified expression
for crystalline, liquid and amorphous states. The basic
idea behind this free energy expression involves the di-

aelastic softening of shear moduls with defect concentra- '

tion and, therefore, elastic moduli, vibrational frequency
spectrum of a lattice etc. are taken into account. The
main purpose of the present report is not to discuss the
details of the free energy expression and readers inter-
ested in should refer to the original article. In the present
context, it is suffice to focus only on the simplified ex-
pression of eq.(11) given by y = y(t,x) where ¢ is the
temperature and x is the amount of interstitialcies which
may be regarded as the number of defects which induce
the melting. This simplified expression is isomorphic to
eq.(4) for the CVM free energy.

Among various quantities relevant to CG transition,
ideal glass transition temperature is calculated based on
eq.(11). The minimum of the free energy above the melt-
ing temperature, f,.;, corresponds to the liquid phase
and the temperature dependence of the liquid free ener-

(=) +g) + 2 41— 425].

sition. The free energy is mathematically quite compli-
cated with various materials parameters and is given by

(1)

1+ax

gy is plotted by a broken line in Fig.3(a). It is noted that
the line intersects exactly at #,.,=1.0 at which the free
energy becomes 0, which is the energy reference state.
Below ., the liquid state is a metastable state. In the
same figure, temperature dependences of free energies
of three defective crystals characterized by x = 0.5, 1.0
and 2.1 are plotted. The intersection of each curve with
the broken line (liquid phase) indicates the melting tem-
perature of a defective crystal. One sees that the melting
temperature decreases with the increase of defects.

It is noticeable that the free energy curve of x = 2.1
does not intersect but merges with liquid free energy at
t = 0.86. (Note that Okamoto et al {20] was the first to
perform the analysis but the present value slightly devi-
ate from their results.) This suggests that the entropy of
defective crystal of x*=2.1 and that of liquid becomes
identical, which is the indication of the ideal glass tran-
sition temperature. In fact, the same analysis performed
for the CVM free energy is demonstrated in Fig. 3(b)
which should be realized as the vertical section of the
free energy contour surface in Fig.1 evaluated at each 7.
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Fig. 3. (a) Temperature dependences of free energies for liquid (broken line), and three kinds of defective crystals characterized by the
amount of the defect indicated by x. The free energy at x = 2.1 no more makes intersection with liquid line but merges at ¢ = 0.86. (b) The
same analysis performed for CVM free energy. At 0.976, free energy merges liquid (1.0)

The merging of the free energies suggests the ther-
modynamic instability manifested by the vanishing of
the second order derivative of the free energy, implying
the loss of the stability against the fluctuation of the
amounts of defects. As was pointed out in the previ-
ous section, this corresponds to the spinodal ordering
in OD system. The clear distinction, however, should
be made between CG transition and OD transition. The
later can be discussed within the thermodynamics, while
the former is mostly kinetics phenomena. Then, in order
to study CG kinetics based on Granato free energy, a
simple first order rate equation is employed,

on af

o on’
where  and f are the order parameter and the free en-
ergy which are equivalent to x and y in eq.(11), respec-
tively, and ¢ in the equation above is time which should
not be confused with the temperature in eq.(11), and L
is the relaxation constant. This rate equation is exactly
the same as Time Dependent Ginzburg Landau equation
without the gradient energy term. Since the elementary
kinetics process is controlled by the relaxation constant,
the enhancement of the viscosity with decreasing the
temperature is accounted for through

(12)

L=D- —1-
M
where D is a constant and the temperature depen-
dence of the viscosity p is again assigned through
Vogel-Fulcher-Tamman equation [15] given by eq.(10).
The calculated cooling curves are demonstrated in
Fig.4. In all the cases, the system is initially at temper-
ature 1.2 (liquid state) and is cooled with three different
cooling rates, CR, denoted in the figure, where CR=1.0
indicates that the system is cooled down to ¢ = tx (0.86)
linearly with time steps 10000. CR=10, and 100 are ten
and hundred times faster cooling rates, respectively. One
clearly confirms the frozen of the order parameter (x) for
each cooling curve before reaching the critical defects
concentration x* = 2.1. Under the linear cooling rate,
the bigger the CR is, quicker the reduction of relaxation
constant due to the enhanced viscosity is encountered
and the order parameter is frozen in the higher level
of x.

(13)



As are understood from Figs.1 and 3(a) and (b), the
appearance of the ideal glass transition temperature is a
versatile property associated with a free energy curve for
the first-order transition. Also, the locking of the order
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parameter shown in Figs. 2 and 4 is a natural conse-
quence of the retarding kinetics due to the exponential
decay of thermal activation process.
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Fig. 4. Cooling curve obtained by Granato free energy. CR indicates the cooling rate and horizontal broken line indicates the critical amount
of defects at the ideal glass transition temperature. Shown by insert is the temperature dependence of relaxation constant L assumed in the

present study

Unlike Granato free energy which is based on so-
phisticated physical considerations of elastic properties,
CVM free energies in egs.(1) ~ (4) are merely an ana-
logue to the first order thermodynamics. Yet, the natural
extensibility to kinetics by PPM is a unique advanta-
geous feature of the CVM, and it is desirable to explic-
itly incorporate structural properties of liquid and glass
in the free energy. An attempt towards the incorporation
of structural properties is briefly discussed within the
Continuous Displacement CVM (CDCVM) in the next
section.

¥Y=w-: fdl' i fdl'l cp(r—r)) 'fpair (r,r")
~kp - T - [@w = 1) [ dr - L(fpois (1) = w- [dr - [dr - L(fpair (0,1)) + (w = D],

where fpoint (r) and f,u;r (r, r’) are point and pair distri-
bution functions to describe the probabilities of finding
an atom or an atomic pair, respectively. r and r’ denote
the displacement of an atom from the Bravias lattice
point, ¢(jr - r’|) is the atomic pair potential for which
Lennard-Jones type potential is often assumed. It should

5. Continuous Displacement Cluster Variation
Method

The basic idea of the CDCVM [9-14] is to introduce
additional points around each Bravais lattice point in or-
der to allow an atom to displace to one of these points.
These additional points are termed quasi lattice points
and the additional freedom of the atomic displacements
increases the entropy and reduces the internal energy,
leading to the reduction of the free energy of the sys-
tem. In particular, for a system with two atomic species
in different atomic size, such displacements are enhanced
and are detected by a scattering experiment [21].

Within the pair approximation of the CDCVM, the
free energy is written as

(14)

be realized this is the natural extension of the entropy
formula of conventional CVM with the replacements of
Xi by fpoint (¥) and y;; by fpair (r, r’). In the numerical
calculations, the integral is replaced by sums and the
number of meshes around a Bravais lattice point coin-
cides with that of the quasi-lattice points. In the actual
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minimization, two kinds of constraints originating from
normalization condition imposed on the pair distribution
function and symmetry requirements of the parents lat-
tice are added to eq.(14). Shown in Figs. 5(a) and (b) are
examples of the calculated point distribution function,
Spoinr (r), for the Lennard-Jones system on the two di-
mensional square lattice at normalized temperatures 0.3
and 1.0, respectively. One clearly sees that the distribu-
tion becomes sharper (broader) with decreasing (increas-
ing) the temperature. In addition to the point distribution
function, fyin: (r), the pair distribution function, fpa: (r,
r’), conveys further information of local atomistic struc-
tures. And, the bigger the basic cluster is, the more the
structural information can be derived.
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Fig. 5. Point distribution function around a Bravais lattice point
of two dimensional square lattice at temperature 0.3 (a) and 1.0
(b).Temperature is normalized with respect to atomic interaction en-
ergy assigned by Lennard Jones potential. The numbers in the hor-
izontal and vertical axes indicate the distance (1.0 corresponds to a
lattice constant.) from Bravais lattice point at the center

The application of the CDCVM to CG transition is
still at the beginning stage, and one of the basic neces-
sities is to seek an appropriate order parameter. As was
described, in most cases including conventional CVM,
PPM and Granato free energy, the amount of the de-
fects is commonly employed as the order parameter. In
the CDCVM, a generalized Lindemann parameter [20]
defined as

@)

a

5)

Received: 10 September 2008.

where u the average atomic displacement and a the lat-
tice constant, can be a candidate of the order parameter.
In fact, a preliminary calculation [22] indicates that this
approach is promising and more details will be published
elsewhere.
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