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PHASE TRANSITIONS IN BINARY ALLOYS: NANOPARTICLES AND NANOWIRES

TRANSFORMACJA FAZ W STOPACH PODWOJINYCH: NANOCZASTKI I NANODRUTY

The phase diagram of nanosystems is known to be a function of their size and shape. The variation with temperature
depends on the surface tensions involved in the phase transitions. When looking at the nucleation process in nanoparticles, it
turns out that it is necessary to take into account the fact that the reservoir of matter is limited. In a nanosystem, the total
amount of one of the chemical components may be too small for the synthesis of the critical nucleus. This gives rise to three
possibilities: phase separation, prohibition of decomposition, formation of metastable phases. A new effects arise for phase
transformations in binary and multicomponent nanosize systems with change of composition — finite depletion effect. It is shown
theoretically that the usual concept of phase diagram has to be re-formulated when dealing with multicomponent nanosystems.
The liquidus and solidus lines are shifted due to size effects. Moreover, it turns out that it is required to differentiate the
solidus and liquidus curves and equilibrium curves after the first order phase transition. In this work, we study how the phase
transitions of binary nanoalloys are treated in the case of nanoparticles and nanowires.
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Wykres fazowy nanoukladéw zalezy od wielkosci i ksztattu czastek. Temperaturowe zmiany zaleza od napie¢ powierzch-
niowych faz wystgpujacych podczas przej$¢ fazowych. Rozpatrujac proces zarodkowania w ukladach z nanoczastkami musimy
uwzglednié fakt, ze zas6b materii w otoczeniu jest ograniczony. W nanoukladzie, catkowita ilo$¢ jednego ze skiadnik6w moze
by¢ zbyt mata dla syntezy krytycznego zarodka. To prowadzi do trzech mozliwosci: separacji faz, uniemozliwienia rozpadu
lub formowania faz metastabilnych. Pojawiaja si¢ nowe efekty zwiazane ze zmiang skladu podczas transformacji fazowych
w podwéjnych lub wieloskiadnikowych ukfadach w skali nano — efekt kraficowego wyczerpania. Teoretycznie wykazano, ze
powszechna koncepcja ukiadu fazowego powinna by¢ sformutowana na nowo przy rozpatrywaniu wieloskladnikowych nano-
systeméw. Linie likwidusu i solidusu ulegaja przesunigciu zwigzanemu z efektem wymiarowym. Poza tym, nalezy rozr6zniaé
linie likwidusu i solidusu i krzywe réwnowagowe po transformacji fazowej pierwszego rzedu. W tej pracy, pokazano jak nalezy
rozpatrywa¢ transormacje fazowe podwéjnych nanostopéw w przypadku nanoczastek i nanodrutéw.

1. Introduction

Particles with diameter in the range of 1 to 100
nm are in a state intermediate between the solid and
the molecular ones. When the number of atoms in the
particle is in the thousand range or above, properties
evolve gradually from the molecular to the solid ones.
Such particles are characterized by the fact that the ratio
of the number of surface to volume atoms is not small.
Hence, it is obvious that the effects of the surface on the
cohesive properties of the particle cannot be neglected.
In the case of inorganic particles, it is well established
experimentally that, in the nm range, the melting tem-
perature, T,,, decreases with decreasing radius, R [1].

e

When one extrapolates this simple argument to com-
pound materials and alloys, one concludes that their
phase diagram might differ from the one of bulk materi-
al. A further argument is that segregation is known to oc-
cur at the surface of solids and liquids. Since nanoparti-
cles are intermediate between bulk and surface, it seems
obvious that the phase diagram might vary with R.

Binary nanoparticles and nanowires are the subject
of much attention [2, 3]. They are of fundamental and
applied interest and seen in many experimental situations
(vacuum evaporation, heterogeneous catalysis, nanopow-
ders, nanostructures, nanoelectronics, composite materi-
als, etc.). Recent advances in the synthesis and the char-
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acterisation of size-selected particles in the nanometer
range are such that it becomes possible to investigate
their physical and chemical properties.

For inorganic materials, it is known that T, decreas-
es linearly with R~!. This dependence is a function of
the values of the surface tensions of the liquid, y;, and
the crystal, .. Since the theoretical work of Pawlow
[4] in 1909, various models have been devised to de-
scribe the variation of the melting temperature with the
radius of the particle [5-10]. When the particle is not
spherical (like metals embedded in polymers or other
materials), it has been argued that the melting point de-
pression might be smaller or larger than for a spherical
particle, depending on its shape [11]. It has also been
argued that this depends on the chemical environment of
the particle, via the surface tensions [12]. This has been
demonstrated experimentally for various cases, like lead
particles in pure and contaminated atmospheres [13], or
In particles embedded in Al matrix [14].

The phase diagram is also involved in the deposi-
tion of particles on substrates, as shown experimentally
[15,16] and theoretically [17, 18].

It is then interesting to look theoretically at the effect
of size on the phase diagram of binary small particles.
The present work is aimed at the evaluation of this effect.
The thermodynamical arguments are developed in Sec-
tion 2. Section 3 is devoted to the size-dependent transi-
tion temperature and melting criterion. The application
of the Gibbs method of geometrical thermodynam-
ics for binary phase diagram is discussed in Section 4.
In Section 5 we show the influence of the conservation
rule and finite size effect on state diagram. In Section
6 we discuss modifications related to effect of shape.
Conclusions are presented in Section 7.

2. General theory

The reasoning is based on the calculation of the iso-
baric Gibbs free energies of the phases. This means
that we consider relatively large particles (with R > 3
nm), where : 1) the number of atoms, N, is such that the
thermodynamical arguments remain valid; 2) the sur-
face of the particle may be characterised by the surface
tension. In the following, it is assumed that the surface
tension corresponds to the solid-vacuum interface. When
two elements are mixed, the Gibbs free energy of a
binary mechanical mixture is given by [19]:

8m = X1h1 + x2hy — T(x151 + x257), )

where x; and x, are the atomic fractions of elements
1 and 2, respectively; h; and s; are the corresponding
enthalpy and entropy, respectively. In the following, the

energies are related to one atom or, in other words, they
are the total energy of the system divided by the number
of atoms. In the case of ideal solutions, and neglecting
segregation effects, it turns out [20] that:

Ngpare = x(Npy + NPy )+ (1= x) (N + fFNPyy), (2)

where N is the total number of atoms in the particle; x
and (1-x) are the relative concentrations of atoms 1 and
2, respectively. f is a geometrical factor, such that fN%3
is equal to the number of surface atoms; y; and v, are
the surface tensions of elements 1 and 2, respectively.
Here p; are the chemical potentials of components (i =
1, 2) in bulk materials:

pi=hi—T-s;— kT - Inx,. 3)

Let us apply the equations to inorganic materials. In
these cases, it is known that the surface tensions vary
only slightly with temperature, 7. When one assumes
that /s are independant of T, equation (2) shows that,
at fixed x, the energy of the particle is larger than the
one of the bulk by a quantity independant of T.

3. The melting criterion

Let us now look at the melting of the particle. One
has to consider the energy of the liquid phase, g;(T),
relative to that of the crystalline phase, gs(T). Since,
near T,,, we are well above the Debye temperature
of the solid, the specific heat is approximately constant.
Hence, for the elements, one has [21]:

(8L - 85)o=C—-B-T, @

where C and B are constants for a given material. The
subscript states that we are dealing with very large ma-
terials, i.e. with R much larger than the interatomic dis-
tance. In equation (3), (C/B) is the bulk melting point,
and C is the latent heat for melting. By taking into ac-
count the roles of the solid and the liquid phases into
equation (2), one obtains:

N(gpart.s = 8part,L) = N(8ids — i)+ FN?P T(x)-T1 (),
)
where the subscripts s and L refer to the solid and liquid
phases, respectively. ['(x) = x-y; + (1-x)-y,. Introducing
equation (3) into equation (4), a little algebra leads to:

N(8part,L = 8part,s) = N[x(Cy — BiT) + (1 — x)(C2 ~ ByT)H

+fN[x(y1L = Y1) + A = XYoL = V2.0)).
(6)



N(gpart,L - gpart,s) = x[N(gpart,L = gpart,.s')l]+

7
+(1 - x)[N(gpart,L ¥ gpart,s)Z] 0

Last equation indicates that, for «ideal solutions>,
the energy difference between the liquid and solid phases
of a particle of binary system is the ponderated sum of
the corresponding energy of the elements.

For elemental materials, the melting point is cal-
culated from the previous equations, by taking [20]:
N(gpart,L ~ 8part,s) = 0. One then obtains:

T = o + f(1 = YeWBN'? = Ty o[l ~ a/(2R)), (8)

where T, ., is the bulk melting temperature. The term
(f/N'3) is directly proportional to the ratio of surface
to volume atoms. For spherical inorganic materials, « is
positive, between 0.4 and 3.3 nm [7]. When the nanopar-
ticle is not spherical, it is shown [17, 20, 22] that ¢ is
generally larger than for the spherical case.

4. The solidus-liquidus curves

In binary systems, the solid-liquid transition is gen-
erally described by the so-called solidus-liquidus curves.
In the case of ideal solutions, the liquidus and solidus
curves can be calculated by the method of geometrical
thermodynamics [23, 24]. The equilibrium situation is
related to the concavity (or convexity) of thermodynam-
ic potentials. One plots the Gibbs free energy as a
function of composition taking into account the addi-
tional surface energies. For the solid-liquid transitions,
a typical situation is shown in figure 1.

g

0 X6 X X X6 X

Fig. 1. Shift of Gibbs free energy density dependence and solubility
limits found by common tangent. Curves gpun; and gpers charac-
terize the energy density dependence on composition for liquid and
solid nanophases of the same size R, respectively. Curves g; ., and
8se are the energy density dependence for infinite substances. The
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xs and x; are solubility boundaries in nanosystems whereas xg(co)
and xz (o) correspond to the infinite system

Let us now apply this result to a real binary system.
A typical example [25] for Ge-Si ideal solution is shown
in figure 2. It turns out that the lens-like solidus-liquidus
curves are shifted towards lower temperature when the
size of the particle decreases. The reasoning is easily
extended to the cases of other types of phase transitions
[26, 27].
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Fig. 2. Theoretical solidus-liquidus curves in the size-dependent
phase diagram of Ge-Si ideal solution. x is the atomic concentration
of Si. The temperature T is in K. Upper curves: bulk material. Lower
curves: small particle (N = 2.107)

5. Depletion effects

The previous reasoning is based on the assumption
that the quantity of matter is infinite. In the nanopar-
ticles, this is far from being justified. Therefore, one
has to take into account the fact that all stoichiometries
are not available, due to the limited quantity of matter
[28-30]. Depletion effects appear when phase transitions
take place in nanoparticles or in finite systems and that
the “new-born” phase has another composition than the
parent phase. Let us consider an isolated binary nanopar-
ticle, made of A and B atomic species. Let xq be the mole
fraction of species B in the particle before nucleation,
xp is the mole fraction of species B in the new phase
(x» # xp), n and nl are the volume per atom in the
parent and new phases respectively. If the embryo of
the new phase appears, it will need the neighbouring
region of parent phase from which it takes the atoms B.
Nucleation and phase transition becomes impossible for
particle consisting of less than N* atoms:

N* = N} - xp/xp. )
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Here N is the number of atoms in critical nucleus of
the new phase. Thus the effect of depletion of the parent
phase on nucleation and growth in nano-volumes can not
be neglected. Furthermore, there exist a dependence of
driving forces of transition and nucleation barrier on the
size of particles and compositions.

The driving force of transformation and solubility
limits are often determined by assuming that the con-
centration of the parent phase is constant (that is, in
accordance of Gibbs method of geometric thermody-
namics, by common tangent rule). That is far from being
true for nanoparticles [28, 29]. The general peculiarity of
nucleation is that the stoichiometry of the nucleus does
coincide neither with the initial stoichiometry of the par-
ent phase nor the stoichiometry of the new phase after
transformation nor the stoichiometry of the parent phase
after separation. So we can not use quantitatively the
analysis based on the usual method of geometrical ther-
modynamics (the rule of common tangent in figure 1).
Nonetheless, it is helpful for understanding qualitatively
how the configuration of the nanosystem influences the
phase diagram.

In order to show how to deal with the depletion
effect, let us consider the following example. Let us as-
sume that a small isolated initially supersaturated par-
ticle of a given alloy is quenched into the two-phase
region. Then a phase transition from the single phase
state to a two-phase one takes place. A single nucleus
of a new phase forms inside the particle, as shown in
figure 3.

In the starting state, the Gibb s free energy of the
nanoparticle is given by:

Go(xo, N) = N - Ago(xo, T) +v(xp) - So,  (10)

starting
single-phase
state

NXo

(a)

where Sy is the surface area, Ago(xp,7) is Gibbs
free energy density (energy per atom) of formation of
the compound, y(xp)- is the surface tension (function of
composition xp). The Gibbs free energy G,(x,, N,)
of the two-phase nanoparticle related to formation of a
new nucleus is:

Gn(Xn, Nu) = Ny - Agn(%s, T) + (N — Np) - Ago(xp, T)+

+Yn(Xns xp) - Sn + Yo(Xn, xp) - S.
(11)
Here N, is the number of atoms in a new phase nucleus,
Ag,(x,,T)is Gibbs free energy density of a the new
phase, v,(x,, xp)- is the surface tension of new appeared
phase, yo(x,, x,)- is the surface tension of the old phase
after the transition, S, and S are the surface areas of the
new born phase and old phase, respectively.
We see that the compositions in the new and old
phases may be different. So one must take into account
the conservation of matter:

x0'N=xp'(N—Nn)+xn'Nn’ (12)

The effects of size on nucleation and phase transi-
tions related to parent phase depletion were shown in
previous works [29, 30], in the cases of ideal solutions
and intermediate phase, regular solutions, parabolic ap-
proximations. The condition that the Gibbs free en-
ergy of the total system for new two-phase configuration
is smaller than for starting single-phase is defined as the
transition criterion. Let us consider briefly these results
related to notion of phase diagram. The thermodynamic
analysis shows that, at the transition criterion, one can
find the optimal compositions x, and x,. It turns out that
there are three limiting points [29, 31]:

old phase

(b)

Fig. 3. Representation of the particle of composition xy before transformation (a) and the same particle after the transition (b): x, —
composition of ambient parent phase, x, — composition of new-born phase



1) initial composition as the limit solubility xo of
one component in another;

2) composition of the depleted ambient parent phase
xp after the separation;

3) composition of the new-born phase x, as the re-
sult of separation.
These three compositions are different because of the
above mentioned depletion and finite size of the sys-
tem, while, from the usual point of view and Gibbs
method of geometric thermodynamics, the solubility and
equilibrium compositions after the transition in bulk ma-
terial must coincide. When a nanoparticle separates into
two different phases, the equilibrium phase diagram is
splitted and shifted, as compared with the one of the
bulk material. It is also size dependent.

Qualitatively the shift of phase diagrams of
solid-liquid transition and depletion effect is shown (only
for liquidus for simplicity) in figure 4.

0 Tl
Fig. 4. Representation of size-dependent temperature- composition
diagram of a nanoparticle at fixed radius R: — freezing and melting
as an example of liquid-solid transition. Point P; indicates the initial
composition xo before nucleation, point P, characterizes equilibrium
composition x, after the separation, P; shows optimal mole fraction
in the new phase x,. PiP; is the depletion in the parent phase

The particular case of the Cu-Ni binary system has
been studied elsewhere [32].

It implies that new meanings and difficulties appear
in the explanation of the state diagrams of a nanosys-
tem. We show that such notation like ‘phase diagram’,
‘solubility’, ‘solidus’ and ‘liquidus’ must be reviewed in
nanophysics.

6. The effects of shape

The previous discussion treats explicitely the case
of spherical nanoparticles. However, other shapes exist
in the literature, like nanowires. It is of interest to look
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at the effect of the shapes on the previous results. Two

cases have to be considered: the solidus-liquidus curves

and the solubility curves.

The solidus-liquidus. In this case, it is not necessary to

take into account the core-shell structure. The procedure

for going from the spherical to the cylindrical shapes has
been discussed in a previous work [33]. The procedure
is the following:

1) the size-dependent phase diagram of spherical parti-
cles of a given system is known;

2) when the surface tensions are not known, the knowl-
edge of the shape of the system allows, via a geomet-
rical factor, the determination of the phase diagram
for a given size and shape of the nanowire. Up to
now, one obtains an order of magnitude of the shift
of the phase diagram as compared with the bulk case;

3) when the surface tensions of the faces are known,
they are introduced in the calculation (equation (7)),
in order to obtain more precise phase diagrams.

It is worth noting that this procedure is valid as far as the

thermodynamic approach is justified, i.e. when the radius

of the nanowire is larger than 2-3 nm. The reasoning is
based on the assumption that the quantity of matter is
infinite.

The solubility curves. In this case, one has to take in-

to account both the limited quantity of matter and the

presence of a core-shell structure. The shape is intro-
duced in the equations (10) and (11) via the number of
atoms (&, N,)) and the areas (S, S,,). Let us assume, in first
approximation, that the atomic densities of the various
phases are equal. Therefore, in the case of a spherical
nanoparticle, N and N, are proportional to R* and r3,
respectively. R and r are the radius of the particle and
of the embryo, respectively. In the case of a cylindri-

cal nanowire, N and N, are proportional to R? and r?,

respectively. Hence, equation (12) may be rewritten as:

x R=x, R-r)+x,-r (13a)

x0 R =x, - (R2=r%) +x, - 1% (13b)
Equations (13a) and (13b) are for the spherical and cylin-
der cases, respectively. It is worth noting that these equa-
tions remain valid when the systems are made of intri-
cating regular polyhedra or cylinders. These equations
may be changed to:

x9 =%, (1=rIR®) + x, - PR3 (14a)

x0 = Xxp - (1 = r*/R?) + x, - r*|R2. (14b)

If one knows the solutions for the spherical case, one
easily deduces the conditions for the cylinder by replac-
ing r*/R® by r’/R?.
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Similarly, equations (10-11) may be rewritten as:

Gip(x0,R) = fr, - R® - Ago(xo, T) +¥(x0) - fup - 1%, (15a)

Gei(x0,R) = £, - R? - Ago(x0, T) + y(x0) - £ -7, (15b)

Gsp(xm Nn) = f;p - r3 - Agn(xn, T) + f;p . (R3 g r3).

-Ago(xps T) + Yalkn, Xp) - fop - 17 + Yo(Xns Xp) - fo - R
(16a)

Get(hns Np) = oy - 1% - Aga(%0, T) + f1y - (R = 77

'AgO(xp, T) + ¥n(Xn, xp) ’ f;; - r + vo(Xa, xp) : f:; ‘R
(16b)

fipr fopn [y and [, are geometrical factors.
One must repeat the thermodynamic analysis of the
stability of the system by using the transition criterion.

7. Conclusions

The thermodynamical approach is of interest for the
understanding of the size-dependent phase diagram of
nanosystems. It allows to understand how the melting
point and liquidus-solidus curves are shifted when the
size decreases. Moreover, when one takes into account
the fact that the quantity of matter is limited, new ef-
fects appear. This implies that the concepts of phase dia-
gram, solubility, solidus and liquidus have to be carefully
re-examined when one deals with nanosystems. When a
nanosystem goes through phase transition the equilibri-
um phase diagram is splitted and shifted, as compared
with the one of the bulk material. Solubility limits may
be essentially varied by the geometry of the nanosystem
and composition dependence of the surface energies at
interface as well as in the interphase boundary between
the solid and liquid. The effective width of the two-phase
interval on the state diagram temperature — composition
may increase as well as decrease, as compared with the
bulk case. Instead of one line of solubility, correspond-
ing to the bulk phase diagram, one obtains three lines,
namely: line of solubility (when the transition starts) and
lines of equilibrium compositions after the phase tran-
sition. Solubility and equilibrium compositions after the
separation in bulk materials coincide.

Recently authors outlined new notions of size de-
pendent ‘solubility diagram’ and ‘nanophase diagram’ to
provide a physically acceptable explanation of the phe-
nomenon in a nanosystem.

It is also shown how the shape of the nanosystems
influence their phase diagrams.
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