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Similarity Solution for PhaSe Change of Dilute Binary iSomorPhouS alloy  
with DenSity Variation During PhaSe Change 

A similarity solution for conduction dominated solidification of a dilute binary isomorphous alloy has been developed. the 
effect solidification due to density change during phase transformation has been highlighted and investigated in detail. the gov-
erning equations for solid, liquid and mushy phase has been proposed, taking into account the effect of shrinkage or expansion 
due to density change during phase change. the thermo-physical properties (thermal conductivity and specific heat), equilibrium 
temperature and phase fraction are evaluated within the mushy zone using averaging technique. the effect of equilibrium and 
non-equilibrium solidification is investigated using Lever and Scheil’s rule models respectively. In addition, the effect of boundary 
and initial temperature on solidification behavior of the alloy is also addressed. It has been observed that the interface (liquidus 
and solidus) moves faster with increase in density ratio and decrease in boundary and initial temperature. No major changes in 
temperature distribution and interface position has been observed with variation partition coefficient and microscale behavior 
model (Lever rule and Scheil’s rule).
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1. introduction

Generally, most of the investigations on derivation of ana-
lytical expressions on phase change has been limited to single 
component systems. Özișik [1] provided list of exacts solution 
in the book for single component phase change in a semi-infinite 
domain for different kind of boundary conditions assuming 
interface to be sharp. Subsequently, Alexiades and Solomon [2] 
presented extensive list of cases in the book that examined the 
effect of thermo-physical properties (specific heat, latent heat, 
thermal conductivity and density) on phase change behavior of 
single component systems in one dimensional domain. this is 
carried out by analyzing the front position and movement dur-
ing solidification and melting. Turkyilmazoglu [3] proposed 
material movement for Stefan problems with moving boundary 
problem. Ceretani and Tarzia [4] developed exact solution for 
one-dimensional two-phase Stefan problem for a convective 
boundary condition. Barannyk et al. [5] proposed exact solution 
with heat generation and having heat flux boundary condition. 
Parhizi and Jain [6] used perturbation method to obtain solu-
tion for one dimensional Stefan problem with time dependent 
heat flux. 

Experimental investigations have been carried out for the 
phase change of binary alloy [7,8]. Different type of numeri-
cal methods like finite element method, finite volume method, 
boundary element method etc. [9-13] have been proposed which 
assist in understanding the physics of the phase change process of 
the binary alloy. the analytical models are very much useful for 
analysis as the results are reliable as compared to that obtained 
from numerical models on phase change which are error prone. 
however, one of the major drawbacks associated with analytical 
models is that it is quite challenging to formulate and derive exact 
solution for complex geometry. the derived analytical expres-
sion can be used for verification of physics of new numerical 
schemes for phase change process.

the physics and behavior of binary alloy phase change is 
different from that of single component phase change. In case of 
single component alloy the phase change takes place at a fixed 
temperature, whereas for a binary alloy it takes over a tempera-
ture range. this leads to formation of two phase zone which is 
mixture of both solid phase and liquid phase called mushy zone. 
the phase change associated transformation and solute segrega-
tion takes place within the mushy zone which makes it vital to 
investigate conjugate heat transfer physics in this zone. A limited 
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number of analytical studies exists in literature that have derived 
exacts solution for binary alloy phase change [14-17]. Chung et 
al. [14] proposed an analytical solution for conduction dominated 
solidification of binary mixtures by assuming different thermal 
conductivities for solid and liquid. Chakraborty and Dutta [15] 
developed an analytical solution for unidirectional solidifica-
tion of the binary eutectic mixture using both Lever rule model 
and Scheil’s rule model. the governing equations within the 
mushy zone were modelled using averaging technique. Voller 
[16] derived similarity solution for an under cooled binary alloy. 
Assunção et al. [18] Planella et al. [19-21] proposed small time 
semi analytical solution for solidification of binary alloy. Chau-
rasiya et al. [22] developed analytical solution for solidification 
of binary alloy with imposed boundary movement. 

the present work addresses the effect of shrinkage and 
expansion due to density variation during phase change of dilute 
binary isomorphous alloy. In most practical cases the density is 
assumed to be constant. During the phase change, there is sig-
nificant density change of approximately –20 to 20% depending 
on the material [23]. in most cases, like that of alloy and other 
non-metallic elements and compounds, shrinkage occurs dur-
ing solidification, whereas in the case of water and polymers 
expansion observed during solidification. In our previous work, 
an analytical solution was although developed for solidification 
of binary alloy taking into effect of phase density but it is valid 
for phase transformation with sharp interface [17]. however, 
generally solid and liquid phases are separated by a mushy zone 
(having significant width) which has varying fusion temperature 
(depending on concentration and morphology). All phase trans-
formation occurs within the mushy zone. hence, the focus of the 
present model concentrated on developing an analytical solution 
using similarity variable by considering density variation dur-
ing phase change and highlighting the transport mechanism in 
the mushy zone developed during the solidification of a binary 
isomorphous alloy. A semi-analytical solution has been proposed 
for both equilibrium and non-equilibrium solidification with the 
help of Lever and Scheil’s rule model. the developed analyti-
cal model could be used for validation of the numerical results 
obtained by simulation of binary alloy phase change process 
such as casting and selective laser melting.

2. Problem description 

the thermophysical properties of Cu-Ni binary isomor-
phous alloy composition which is dilute in copper is chosen for 
analysis in present study which can also be carried on binary 
eutectic alloy system. the physical schematic of the present 
problem is shown in Fig. 1. Initially, the superheated melt of 
a binary alloy is at a temperature Tinitial, which is above the 
equilibrium melting temperature of the alloy. Suddenly, the left 
wall (x = 0) temperature was dropped to Tb, which is below the 
equilibrium melting point of the alloy. As a result, solidification 
starts from the left cold isothermal wall and proceeds in a direc-
tion perpendicular to the wall.

Following assumptions have been taken while developing 
the binary mixture model.
1. the thermo-physical properties like thermal conductivity 

and specific heat are assumed to be invariant with tem-
perature, position and time. Within the mushy zone, these 
properties are obtained by interpolating it as a function of 
the average liquid fraction.

2. the density is assumed to be constant in solid, liquid and 
mushy phase though it may be different in each zone.

3. The solidus and liquidus interface is assumed to be sharp 
and straight for the entire period of solidification.

4. The temperature is assumed to vary only unidirectionally 
along the direction of solidification.

5. Conduction is assumed to be a dominating mode of heat 
transfer, while convective and radiative effects are ne-
glected.

6. natural convection due to buoyancy effects is neglected.
7. Species diffusion is assumed to be negligible as compared 

to thermal diffusion in solid phase.
8. The model assumes uniform composition of the binary alloy 

all throughout the solidification process.
9. The partition coefficient value is assumed to be fixed 

and  invariant with change in time, composition or tempera-
ture.

10. Coupling between temperature and concentration is gov-
erned by the phase diagram for the respective mixture, while 
between concentration and phase fraction is obtained from 
the Lever rule model, Scheil’s rule model or Broody Flem-
ming’s model depending on the diffusion rate of solute in 
solid and mushy phase.
the properties for pure Copper, pure Nicker and Copper 

nickel alloy (0.05%, 0.1% and 0.15%) used in computing cer-
tain primitive variables as well as the derived parameters are as 
given in tABLE 1.

3. governing equations

Incorporating the assumptions considered in the proposed 
model, a set of governing equations are obtained for solid, liquid 
and mushy zone, which is given by eqs. (1)-(3) [15,17].

 

2

2 0 Solid 1 , phas )e(S

S
S

S x
T T
t x

x


 


 
   (1)

 

 

2

2

Mushy z

11 1

,

( )one phase

S S SM M

M M L

M f SM

S

M

L

f dxT T
t dt x

x

L fT
k t

x
x

x


  



   
   

  


 


   (2)

 

2

2

Liquid pha

1 1 1

se

,

( )

S SL L L

L L L

L

dxT T T
t dt x x

x x


  

   
   

   
    (3)



1089

Fig. 1. the problem domain with respective phases at (a) initial time 
(b) at a given time during solidification

eqs. (1), (2) and (3) represents the energy equations govern-
ing three phases that are solid, liquid and mushy zone. there is 
an extra term that comes on left-hand side of the energy equation 
governing liquid and mushy zone phase, to take care of heat 
transfer due to density change. In addition, there is a second term 
on right-hand side of equation governing mushy zone phase. this 
term account for the latent heat generated within the mushy zone 
during solidification of the binary alloy. using the chain rule for 
transient part of this term we get,
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Substituting eq. (4) in eq. (2) and rearranging we get fol-
lowing equation for mushy phase
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3.1. initial, interface and boundary conditions

Initially, the whole liquid is maintained at a uniform tem-
perature and concentration, which is represented mathematically 
by eq. (6).

 T = Tinitial 0 < x < ∞ at t = 0 (6)

the boundary conditions at left cold wall and on the other 
side of the semi-infinite domain can be given as

 T = Tb at x = 0 (7)

 Tinitial = Tb as x → ∞ (8)

Boundary conditions at the solidus and liquids interfaces 
can be given as

 TM = Tsolidus at x = xS (9)
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 TM = Tliquidus at x = xL  (11)
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3.2. non-dimensionalization

For systematic parametric analysis, the governing equations 
along with the boundary conditions and interface conditions 
are non-dimensionalized using the dimensionless parameters 
as defined below.
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On substituting the above dimensionless parameters in 
eqs. (1), (3) and (5), will result in following non-dimensional 
form of governing equations.
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using the dimensionless parameters defined in eqs. (13)-
(15), the boundary and interface conditions can be represented 
in non-dimensional form as.

 θS = 0 at x = 0 (19)

 θL = 0 at x → 0 (20)

Similarly, on substituting non-dimensional parameters in 
interface conditions given by eqs. (9)-(12) results in 

 θS = 1, θM,solidus = 1, at  (21)
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 θL = 1 at x = xL (23)
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3.3. Similarity transformation

A similarity transformation is applied through similarity 

parameter η = xg(t ) where, 1( )
2 S
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t

 , to the eqs. (16)-(18) 

and are transformed into ordinary differential equations as given 
below. 
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3.4. Solution to the governing equations

the exact solution for the solid and liquid phase can be 
directly obtained and is given as
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In the present analysis, the study is majorly focused on 
mushy zone. In case of binary alloy, all phase transformation 
occurs within the mushy zone. most of the work on analytical 
solution that has been obtained is for binary isomorphous alloy, 
in which liquid fraction within the mushy zone varies linearly 
with temperature. In the current context the relation between 
temperature and liquid fraction is obtained indirectly. Based 
on the linearization of the liquidus and solidus slope as an as-
sumption as in Fig. 2, we get relation between temperature and 
concentration in a manner, as given in eqs. (30) and (31).

From the eutectic phase diagram (Fig. 2) we will get the 
following equations
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the relation between temperature and liquid fraction can 
be obtained by obtaining an expression which relates concentra-
tion and liquid fraction. With the help of Lever rule model (for 
equilibrium solidification) and Scheil’s rule model (for non-
equilibrium solidification) a relation between concentration and 
liquid fraction, can be expressed as
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using eqs. (30)-(33) a relation between temperature and 
liquid fraction can be obtained, which on further simplification 
results in rate of liquid fraction variation with temperature as 
given in eqs. (34)-(35), for equilibrium and non-equilibrium 
solidification. 
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lever rule model (equilibrium solidification)
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Scheil’s rule model (Non-equilibrium solidification)
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To find the term ∂fS /∂TM in eq. (17), eq. (34) and eq. (35) 
can be used. the overall average change of solid fraction with 
respect to change in temperature in the mushy zone could be 
expressed as

 where
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eq. (36) represents an averaged solid fraction over an 
interval between liquidus and solidus temperatures. there is no 
explicit analytical expression that could relate variation of solid 
fraction with temperature within the mushy zone. One advantage 
of using averaging is that the term ∂fS /∂TM can be easily found 
out over mushy range, making approach to our current problem 
quite simpler and straightforward.

using eq. (34) and eq. (36) and integration over mushy 
zone range gives the average value of ∂fS /∂TM represented by  
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f  obtained from eq. (37), the 

average equilibrium temperature over a mushy range can be 
obtained with the help of eq. (34) as
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the equilibrium average solid fraction can be obtained from 
eq. (30) and eq. (32) as
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Similarly, combining eqs. (35)-(36) and integrating over the 
given mushy range, the expression for average value of ∂fS /∂TM 
using Scheil’s rule model can be obtained as
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With the help of T
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f  obtained from eq. 40, the average 

equilibrium temperature over a mushy range can be obtained 
using eq. (35) and eq. (40) as
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Fig. 2. Phase diagram for binary isomorphous alloy
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the average equilibrium solid fraction can be obtained from 
eq. (31) and eq. (33) as
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On obtaining fS,eq, the average thermo-physical properties 
within the mushy zone can be obtained as

  , , ,1M eq S eq S S eq Lf f      (43)

Where φ may be density, thermal conductivity, specific heat etc.
once all the values required for solving eq. (26) are ob-

tained, we could obtain a semi-analytical expression for the 
mushy zone. A step-by-step procedure for finding out the position 
of mushy zone is summarized below.
1. Express temperature of mushy zone as a function of con-

centration, from the eutectic phase diagram related by 
expression TM = F(CL) as given by eqs. (30) and (31).

2. Find out the concentration as a function of solid fraction, 
given by relation CL = F( fS) as given in eqs. (32) and (33) 
for Lever and Scheil’s rule models respectively.

3. using Steps 1 and 2, relation between temperature and solid 
fraction can be obtained as TM = F( fS).this relation could 
be obtained from different models, mainly Lever rule model 
and Scheil’s rule model.

4. Calculate ∂fS /∂TM as given in eqs. (34)-(35). 
5. Calculate the average value of ∂fS /∂TM from eq. (36).
6. obtain fS,eq, Teq and φM, eq.
7. Substitute all the required input average properties to solve 

eq. (26) for θM in the mushy zone.
on following systematic execution from Step-1 to  Step-7, 

the temperature distribution within the mushy zone can be 
obtained as

   ,M solidus liquidus solidus S LT T T T           (44)

Where
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 (46)

the temperature distribution within solid, liquid and mushy 
zone is obtained from eqs. (28), (29) and (44). These analytical 
expressions could be substituted in solidus and liquidus interface 
conditions (eqs. 22 and 23) to obtain two nonlinear equations 
(eqs. 47 and 48) which can be simultaneously solved to get the 
constants ηS and ηL.
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Where

 , 2 1 1 ,

1 1

S S S
M M S S'

M LM

M f S
'

M M MM

a b f

L f
k T

  


 




 
     

 


 


and 2 1S S S
L L S

L L L
a b

  


  
 

    
 

for validation of expression obtained as given in eqs. 47 
and 48, the density variation term is switched off by substituting 
R = 1, which reduces the expressions for constant density as
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4. results and discussion

In the present analysis, a semi-analytical solution has been 
developed for solidification of a binary isomorphous alloy con-
sidering the effect of density change during phase transforma-
tion which may provide a benchmark for numerical testing of 
the numerical problems on binary alloy. Chakraborty and Dutta 
[15] proposed an exact solution for conduction dominated phase 
change solidification problem. the effect of microscopic models 
(lever rule model and scheil rule model) were investigated by 
analyzing the temperature and phase fraction distribution in all 
three phase regions (liquid, solid and mushy). however, the 
density was assumed to be constant which is a more simplistic 
assumption. In our previous work a similarity solution for one 
dimensional binary alloy solidification with shrinkage of expan-
sion has been derived [17], while the interface was assumed to be 
sharp. recently semi-analytical techniques have been proposed 
for binary alloy system [24,25] where the effect of shrinkage has 
been taken into account, but in our study we have derived it for 
pure analytical solution where the interface depth and movement 
of mushy zone is obtained tracking the liqudus interface and 
solidus interface individually. 

As mentioned in section 2 (Problem description section), the 
thermo-physical properties like latent heat, thermal conductivity 
and specific heat in the mushy region are evaluated using the 
averaging technique, which varies with change in alloy com-
position during phase change. A systematic parametric study 
has been undertaken to study the effect of density variation (R) 
on interface motion and temperature distribution during phase 
transformation. Similarly, the effect of partition coefficient (kp), 
initial temperature (Tinitial) and boundary temperature (Tb) on 
solidification behavior is investigated in detail.

the temperature boundary conditions at η = 0 and η → ∞ 
are taken respectively as Tb = 1600 K and Tb = 1720 K, while 
the initial temperature is taken as Tinitial = 1720 K in the domain. 
the effect of density ratio on temperature distribution in the 
semi-infinite domain is shown in fig. 3. it is found that density 
variation affects the liquidus interface motion. With increase in 
the density ratio (R) from 1 to 1.12, the liquidus interface moves 

faster. this is due to the larger quantity of heat removal by the 
alloy during solidification (due to increase in the density) which 
is more than compensated by shrinkage effect due to increase 
in the density. For more clarity, the solidus interface position 
(xS) and the liquidus interface position (xL) is plotted with time 
for different density ratio as shown in fig. 4. it can be observed 
that the liquidus front (xL) moves faster than the solidus front 
(xS), making mushy zone to grow in size with passage of time. 
this is due to the fact that ηL > ηS, which makes liquidus front to 
move faster than solidus front. During later times, the difference 
between the position of liquidus fronts, while comparing two 
cases of density ratio (R = 1, R = 1.12) is quite visible. 

tABLE 1

the thermo-physical material properties of pure Copper,  
pure nickel and Cu-ni binary alloy [Callister, 2007]

element/Compound Cu ni 0.05% 
Cu

0.1% 
Cu

0.15% 
Cu

Specific heat,  
Cp (J/kg. k) 384 445 442 439 436

thermal conductivity,  
k (W/m. k) 385 90 105 120 134

Latent heat of fusion,  
Lf (J/kg) 131000 172000 169950 167900 165850

Density of solid phase, 
ρS kg/m3) 8908 8960 8957 8954 8952

Density of liquid phase, 
ρL kg/m3) 7810 8020 8000 7995 7989

 1.12 1.12 1.12 1.12
Tmelt (k) 1630 1728 — — —

Tsolidus (k) — — 1693 1673 1653
Tliquidus (k) — — 1713 1703 1693

the effect of species diffusion for both equilibrium and 
non-equilibrium solidification has been investigated thoroughly 
using lever and Scheil’s rule model as shown in figs. 3-8. To 
study the comparison between these two model predictions, 
interface positions (solidus and liquidus) and temperature dis-
tribution have been plotted in the same figure (shown in fig. 5) 
for different density ratios (R = 1, R = 1.12) and compositions 
(0.05%, 0.1% and 0.15%). on comparing these two microscopic 
transport models, some minor difference has been observed 
on the solidus and liquidus interface motion. While carefully 
looking at temperature distribution, deviation is noticed in 
temperature distribution predicted from both the models. this 
could be attributed behind the mechanism through which the 
solidification occurs using these two models. In Lever rule 
model, the species diffusion is assumed to be infinite in solid, 
while in case of Scheil’s rule model, the species diffusion within 
solid phase is assumed to be absent. this is the plausible reason 
for this minor deviation in the result prediction by both these 
transport models. 

to study the effect of composition change, an extensive 
study has been carried out, where interface positions (solidus 
and liquidus) and temperature distribution has been plotted for 
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fig. 3. Temperature distribution vs. similarity variable (η) in the semi-infinite domain for different initial composition ((a), (b) and (c)) of binary 
alloy as predicted from Lever rule model and Scheil’s rule model for different density ratio (R = 1, R = 1.12)

three different compositions (0.05%, 0.1% and 0.15% Cu) as 
shown in figs. 3-5. it can be observed that the interface moves 
slower with increase in the concentration of copper in the al-
loy. the liquidus temperature decreases with increase in the 
concentration of copper (as can be seen from the phase diagram 
shown in Fig. 2) due to which the onset of solidification gets 
delayed. As the liquidus temperature decreases, greater amount 
of sensible heat needs to be removed from the melt to reach to 

the particular phase change temperature (liquidus temperature), 
thus delaying the solidification process. the size of mushy 
zone is not much affected with change in composition. this 
could be attributed to the fact that heat removal rate from the 
boundary and latent heat of fusion (Lf ) remains almost invariant 
with change in composition. the effect of initial and boundary 
temperature on solidification behavior of the binary alloy are 
shown in figs. 6-7. Temperature distribution in the domain is 
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fig. 4. Position of solidus interface (xS) and liquidus interface (xL) vs. time for different density ratio (R = 1, R = 1.12) and initial composition 
((a), (b) and (c)) of binary alloy as predicted by lever and Scheil’s rule

shown for three different boundary and initial temperatures. 
results are compared for two different density ratios (R = 1, 
R = 1.12). results predicted by two well-known solidification 
models: the lever rule model and Scheil’s rule model are also 
shown side-by-side while studying the above effects. the ef-
fect of initial temperature of melt on solidification of the alloy 
is shown in fig. 6. it is found that as the initial temperature 
increases, both solidus and liquidus fronts moves slower. this 

is because of the increase in the sensible heat content possessed 
by the material with increase in the initial temperature and hence 
a larger quantity of heat to be removed from the melt for the 
solidification to proceed. the size of the mushy zone is highly 
sensitive to change in initial temperature as can be seen from 
fig. 6. it is found that with increase in initial temperature, the 
size of mushy zone decreases. this is due to the fact that as 
the initial temperature increases, the rate of heat removal in-
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creases, thereby decreasing the size of mushy zone. A similar 
solidification behavior is found while perturbing the boundary 
temperature as shown in fig. 7. As the boundary temperature 
decreases, both the solidus and liquidus interface moves faster 
as predicted by both the solidification models. 

One of the major reasons behind it is the increase in driv-
ing potential for heat removal at the boundary. As a result, both 
latent and sensible heat could be removed from the melt in shorter 

period of time resulting in faster movement of the interface. the 
partition coefficient plays a very important role in determining 
the distribution of solute within the solid and liquid phases 
respectively during phase transformation. During phase change 
the value of partition coefficient does not remain to be constant 
and is function of several parameters like nominal composition, 
solidification rate, mushy zone morphology, flow velocity of 
fluid within mushy zone, thermal and mass diffusivity etc. 

fig. 5. Temperature distribution vs. similarity variable (η) in the semi-infinite domain for different density ratio (R = 1, R = 1.12) and initial 
concentration ((a), (b) and (c)) of binary alloy as predicted from Lever rule model and Scheil’s rule model
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however, in the present work the value of partition coef-
ficient is assumed to be fixed for simplicity and ease of calcu-
lation based on the analytical approach. the effect of partition 
coefficient on the solidification behavior is shown in fig. 8. 
the temperature distribution and interface positions plotted as 
a function of similarity variable (η) using both lever and Scheil’s 
rule models for three different values of partition coefficient 

(kp = 0.05, 0.1 and 0.2). The interface positions (solidus and 
liquidus) and temperature distribution is not much affected with 
increase in value of partition coefficient as can be seen from 
fig. 8. This is because the latent heat of fusion remains invariant 
with change in partition coefficient values. moreover, the rate of 
heat removal from the boundary remains constant with change 
in partition coefficient.

fig. 6. Temperature distribution as a function of similarity variable (η) for different initial temperatures (Tinitial) ((a), (b) and (c)) predicted from 
Lever rule model and Scheil’s rule model for different density ratio (R = 1, R = 1.12)
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5. Conclusions

A semi analytical solution has been developed for conduc-
tion dominated solidification of Cu-Ni binary alloy isomorphous 
system, where the density of liquid and solid is assumed to be 
different. Averaging technique was used to evaluate thermo-
physical properties and average phase fraction within the mushy 
zone. the effect of initial and boundary temperatures on the 

solidification behavior of the Cu-Ni binary isomorphous alloy 
have been also investigated in detail. the effect of equilibrium 
and non-equilibrium solidification was also analyzed using Lever 
and Scheil’s rule models. Following few conclusions are made 
out of the detailed analysis. It can be concluded that density 
variation significantly affects the liquidus interface motion. 
• liquidus interface move faster with increase in the density 

ratio. 

fig. 7. Temperature distribution as a function of similarity variable (η) for different boundary temperatures (Tb) ((a), (b) and (c)) predicted from 
Lever rule model and Scheil’s rule model for different density ratio (R = 1, R = 1.12)
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• it was found that both interfaces (solidus and liquidus) move 
faster with decrease in the initial temperature and boundary 
temperature. 

• Minor deviation in the predicted temperature distribution 
and interface (solidus and liquidus) position was noticed 
in the solutions obtained from both the Lever and Scheil’s 
rule models and change in partition coefficient values. 
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aPPenDiX a

Derivation of Similarity transformation for Solid, liquid and mushy Zone Phase

using the similarity transformation parameter η = xg(t), 
where ( ) 1 2 Sg t t . Implementing similarity transformation, 
in Eqs. 16, 17 and 18, we get a set of transformed equations for 
solid, liquid and mushy phase whose derivation has been given 
in detail below.

Solid phase
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t t t
  

 
   

 
    

 (A.1)

 

22 2 2
2

2 2 2
S S Sg

xx
  

 
        

 (A.2)

 

2
2

2
1 S S

S

gx g
t

 
  

 


  
 (A.3)

On substituting x = η/g(t ) in the above equation we would 
get
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Where, 
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  which could be written as 1
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
.

on substituting expression A.1, A.2, A.3 and A.4 in equa-
tion 16, we would get
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mushy zone phase
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Similarly substituting A.6, A.7 and A.8 in eq. (17) we would 
get expression A.9.

https://doi.org/10.1016/j.ijthermalsci.2017.12.019
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liquid phase
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using expression A.14, A.15 and A.16 and substituting it 
in eq. 18 we would get expression, given by A.17.
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the position of solidus front would be given by 

2S S Sx t   and S SSdx
dt t
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

on substituting it in expression A.17 we would get,
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on rearranging the given expression A.18.
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Which could be written as 
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the position of solidus front would be given by 2S S Sx t   

and S SSdx
dt t

 
  .

Substituting the above expression in A.9 we get
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On rearranging we would get,
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this could be written in form
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the above equation could be re-written as
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using expressions in the eqs. B.2, B.3, B.4 and B.5.

 

2

2 2 0M M
M Ma a t

t
 


 
 


 (B.6)

Which could be written as,
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eq. B.7, is and oDe which could be written as
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