
1. Introduction

Functionally graded materials (FGMs) are a new type 
of materials with continuously varied microstructure, which 
lead to the continuous variation of physical and mechanical 
properties through the thickness. These materials are 
advanced, heat resisting, erosion and corrosion resistant, and 
have high fracture toughness. The thick cylindrical pressure 
vessels made of FG materials can be used in many engineering 
fields such as aerospace, mechanical, naval, nuclear energy, 
chemical plant, electronics, and biomaterials and so on.

Horgan and Chan [1] analyzed a pressurized hollow 
cylinder in the state of plane strain. Assuming that the material 
has a graded modulus of elasticity, while the Poisson’s ratio 
is a constant, Tutuncu and Ozturk [2], investigated the stress 
distribution in the axisymmetric structures. They obtained 
the closed-form solutions for stresses and displacements in 
functionally graded cylindrical and spherical vessels under 
internal pressure. Shi et al. [3], studied two different kinds 
of heterogeneous elastic hollow cylinders. One was multi-
layered, and the second had continuously graded properties. 
They found the exact solutions for an N-layered elastic 
hollow cylinder subjected to uniform pressures on the inner 
and outer surfaces. Given the assumption that the material 
is isotropic with constant Poisson’s ratio and exponentially 
varying modulus of elasticity through the thickness, Naki 
Tutuncu [4], obtained power series solutions for stresses 
and displacements in functionally-graded cylindrical vessels 
subjected to internal pressure alone. In a recent study by 
Chen and Lin [5], assuming that the property of FGMs is 
exponential function form, they conducted the elastic analysis 
for both a thick cylinder and a spherical pressure vessel which 
were made of functionally graded materials. Assuming that 

the material properties vary nonlinearly in the radial direction 
and the Poisson’s ratio is constant, Zamani Nejad and Rahimi 
[6], obtained closed form solutions for one-dimensional 
steady-state thermal stresses in a rotating functionally 
graded pressurized thick-walled hollow circular cylinder. A 
complete and consistent 3-D set of field equations has been 
developed by tensor analysis to characterize the behavior 
of FGM thick shells of revolution with arbitrary curvature 
and variable thickness along the meridional direction [7]. 
Ghannad and Zamani Nejad [8], obtained the elastic solution 
of clamped-clamped thick-walled cylindrical shells by an 
analytic method. Assuming that the material properties vary 
nonlinearly in the radial direction and the Poisson’s ratio 
is constant, Zamani Nejad and Rahimi [9] obtained closed 
form solutions for stresses and displacements in a rotating 
functionally graded pressurized thick-walled hollow circular 
cylinder. Assuming the volume fractions of two phases 
of a FG material vary only with the radius, Nie et al. [10], 
obtained a technique to tailor materials for linear elastic 
hollow cylinders and spheres to attain through the thickness 
either a constant circumferential stress or a constant in-
plane shear stress. Based on basic equations of elasticity and 
power series solution method (PSSM), a simple and efficient 
method is proposed to elastic analysis of rotating internally 
pressurized thick-walled cylindrical pressure vessels in plane 
strain and plane stress conditions by Gharibi and Zamani 
Nejad [11].

In this paper, using the infinitesimal theory of elasticity, 
a closed-form analytical solution for displacements and 
stresses of FGM thick cylindrical pressure vessels with 
exponential varying material properties are obtained. For 
the numerical solution, a commercial finite element program 
ANSYS 12 is used.
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2. Problem formulation

Consider a thick cylindrical pressure vessel with an 
inner radius a, and an outer radius b, subjected to internal and 
external pressure Pi and Po, respectively. (Fig. 1).

Fig. 1.  Configuration of an FGM thick cylindrical pressure vessel

It is assumed that the Poison’s ratio υ , takes a constant 
value, because its variation has much less practical significance 
than that of the elasticity modulus, and the modulus of elasticity 
E, is assumed to vary radially according to exponential form as 
follows,
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Here, Ei and Eo are modulus of elasticity in inner and outer 
surfaces, respectively. ξ and η are inhomogeneity parameters.

Radial and circumferential strains (εr, εθ), in the polar 
coordinates are as follows,
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where u is radial displacement.
The stress-strain relations for non-homogenous and 

isotropic materials are
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where σr and σθ are radial and circumferential stresses. A 

and B are related to Poisson’s ratio υ  as
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The equilibrium equation in the absence of body forces, 
is expressed as
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+ = (6)

Substituting Eqs. (4), into Eq. (6), the equilibrium 
equation is expressed as
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here, prime denotes differentiation with respect to R. The 
general solution of Eq. (7) is as follows

( ) ( ) ( )1 2u R C G R C H R= + (8)

where C1 and C2 are arbitrary integration constants. Here G 
and H are homogeneous solutions.

Substituting Eq. (8) into Eqs. (4), yields
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The forms of G and H will be determined next.
Substituting Eq. (1) into Eq. (7), the governing differential 

equation is as follows
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Eq. (10) is a homogeneous hypergeometric differential 
equation.

using a new variable ( ) ( )( )1x nR ln K Rη η ηξ= = −
 and 

applying the transformation ( ) ( )u R Ry x= , the result Eq. (10) is

2

2
2 11 0

*d y dyx x y
dx dx

υ
η η

  +
+ + − − = 
 

(11)

The solution of Eq. (11) is given as
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With ( )CF , ; xα β  being the hypergeometric function 

defined by Abramowitz and Stegun [11],
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In Eq. (15), the arguments α and β are determined as
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From ( ) ( )u R Ry nRη= , the homogeneous solutions G 

and H are found in the form
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The Eqs. (8) and (9) may be rewritten with non-
dimensional parameters as
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Integration constants C3 and C4 are determined by using 
the following boundary conditions
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using Eqs. (22), the constants C3  and C4  are determined 
as follows
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Hence, the radial displacement, radial stress, and 
circumferential stress are as follows
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3. Numerical analysis

In this study in order to numerical analysis of problem, 
a geometry specimen was modelled using a commercial finite 
elements code, ANSYS 12, for a comparative study. In the 
FE model, due to symmetry, only a quarter of the cylindrical 
pressure vessel was considered. An 8-node axisymmetric 
quadrilateral element was used to represent the FGM specimen. 
For modelling of FGM cylindrical pressure vessel, the variation 
in material properties was implemented by 40 layers, with 
each layer having a constant value of material properties. Fig. 
8 illustrates the meshing region. The nodal points along the 
horizontal edge passing through the center were free to move in 
X direction but were constrained from moving in the Y direction 
to reflect the symmetry of cylinder specimen geometry.

In the finite element model, input dada are as follows

80 200 0 3
40 60

i iP MPa , E GPa , .
a mm , b mm

υ= = =
 = =

(29)

4.  Results and discussion

The analytical solution described in the preceding section 
for a thick cylindrical pressure vessel with b = 1.5a, Pi = Po and 

0 3.υ =  is considered.
For different values of ξ and η, dimensionless modulus of 

elasticity along through the radial direction is plotted in Fig. 
2. According to this figure, at the same position (1<R<1.5), 
for  ξ = 1.5, dimensionless modulus of elasticity increases as η  
decreases, while for ξ = 0.5 , the reverse holds true.

Fig. 2. Radial distribution of modulus of elasticity

Fig. 3. Radial distribution of radial displacement

Fig. 4. Radial distribution of radial stress

Figs. 3 and 4 show plots of the radial displacement 
and the radial stress along the radial direction for different 
values of ξ and η = 1.2. From these figures it is observed that 
at the same position (1<R<1.5), for higher values of ξ, radial 
displacement and radial stress decrease.

The circumferential stress along the radial direction for 
different values of ξ and η = 1.2 is plotted in Fig. 5. It must 
be noted from this figure that at the same position, almost 
for 1 23R . , there is an decrease in the value of the 
circumferential stress as ξ increases, whereas for 1 23R .<  
this situation was reversed. Besides, along the radial 
direction for the 1ξ > , circumferential stress increases, 
while for 1ξ > , the circumferential stress decreases.

Fig. 5. Radial distribution of circumferential stress

In Figs. 6 and 7, radial displacement and stresses using 
values ξ = 0.5 and η = 3.6 is calculated and compared to 
those in a homogeneous thick-walled cylindrical pressure 
vessel (ξ = 1).

The radial displacements, radial stresses, and 
circumferential stresses values for ξ = 0.6 and η = 1.2  is obtained 
from ANSYS commercial finite elements analysis program and 
their numerical results are depicted in Figs. 9 to 11.
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Fig. 6. Comparison of radial displacement in an FGM thick-walled 
cylindrical pressure vessel to those in homogeneous thick-walled 
cylindrical pressure vessel

Fig. 7. Comparison of radial stress in an FGM thick-walled cylindrical 
pressure vessel to those in homogeneous thick-walled cylindrical 
pressure vessel

Fig. 8. Finite elements mesh region from  ANSYS code

Fig. 9. Radial displacement obtained from  ANSYS code

Fig. 10. Radial stress obtained from ANSYS code

Fig. 11. Circumferential stress obtained from ANSYS code
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5. Conclusion

In this work, using a mathematical method, an elastic 
analysis for FGM thick cylindrical pressure vessels with 
exponential varying material properties in the plane strain 
condition is presented. The method presented is very suitable 
for the purpose of calculation of radial displacement, radial 
stress, and circumferential stress. To show the effect of 
inhomogeneity on the stress distributions, different values 
were considered for material inhomogeneity parameter ξ. 
The presented results show that the material inhomogeneity 
has a significant influence on the mechanical behaviors of 
exponential FGM thick-walled cylindrical pressure vessels. 
In the present study, from ANSYS commercial finite elements 
analysis program, a numerical solution is also presented. Good 
agreement was found between the analytical solutions and 
the solutions carried out through the FEM. It is also possible 
to find an optimum value for the inhomogeneity parameter 
such that the variation of stresses along the radial direction is 
minimized, yielding optimum use of material.

REFERNCES

[1] C.O. Horgan, A.M. Chan, J Elast. 55, 43 (1999).
[2] N. Tutuncu, M. Ozturk, Compos Part B-Eng. 32, 683 (2001).
[3] Z.F. Shi, T.T. Zhang, H.J. Xiang, Compos Struct. 79, 140 

(2007).
[4] N. Tutuncu, Eng Struct. 29, 2032 (2007).
[5] Y.Z. Chen, X.Y. Lin, Comp Mater Sci. 44, 581 (2008).
[6] M.Z. Nejad, G.H. Rahimi, Sci Res Essays. 4, 131 (2009).
[7] M.Z. Nejad, G.H. Rahimi, M. Ghannad, Mechanika. 77, 18 

(2009).
[8] M. Ghannad, M.Z. Nejad, Mechanika. 85, 11 (2010).
[9] M.Z. Nejad, G.H. Rahimi, J Chin Inst Eng. 33, 525 (2010).
[10] G.J. Nie, Z. Zhong, R.C. Batra. Compos Sci Technol. 71, 666 

(2011).
[11] M. Abramowitz, A.I. Stegun (eds.), Handbook of Mathematical 

Functions. Washington, D.C.: US Government Printing Office 
1966.


