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NUMERICAL SIMULATION OF TURBULENCE FLOWS IN SHEAR LAYER

SYMULACJA NUMERYCZNA PŁYNIĘCIA TURBULENTNEGO W WARSTWIE ŚCINANEJ

For various problems of continuum mechanics described by the equations of hyperbolic type, the comparative analysis of
scenarios of development of turbulent flows in shear layers is carried out. It is shown that the development of the hydrodynamic
instabilities leads to a vortex cascade that corresponds to the development stage of the vortices in the energy and the inertial
range during the transition to the turbulent flow stage. It is proved that for onset of turbulence the spatial problem definition
is basic. At the developed stage of turbulence the spectral analysis of kinetic energy is carried out and the Kolmogorov “-5/3”
power law is confirmed.
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W pracy dokonano analizy porównawczej rozwoju przepływu turbulentnego w warstwach ścinanych dla wielu problemów
dotyczących mechaniki ośrodków ciągłych opisanych przez równania typu hiperbolicznego. Wykazano, że rozwój niestabilności
hydrodynamicznych prowadzi do cyklicznych zawirowań podczas przejścia do stadium przepływu turbulentnego. Udokumen-
towano, że dla wyjaśnienia mechanizmu pojawienia się turbulencji kluczowe znaczenie ma przestrzenna analiza problemu.
Przeprowadzono analizę widmową energii kinetycznej dla zaawansowanego stadium przepływu turbulentnego oraz potwierdzo-
no wartość wykładnika ”-5/3” w równaniu Kołmogorowa.

1. Introduction

Despite the variety of turbulent flows in nature, they still
remain the least studied and are the subject of intense experi-
mental and theoretical investigations. To analyze the structure
and development of the turbulent motion it is very important
to study processes linking the emergence of turbulence and
transition to the stage of developed large-scale turbulent flow.

The concept of an energy cascade goes back to Richard-
son’s idea [1] of the eddy turbulence structure scaling down
to microscales at which viscous dissipation dominates. This
concept was used by Kolmogorov and Obukhov in their stud-
ies [2, 3], which led to the well known spectral structure of
the energy cascade: at sufficiently high Reynolds numbers,
the fluctuation energy density distribution over wave numbers
is divided into a near range of low numbers (energy range),
where energy is generated basically due to the instability of
large eddies; a far range of high numbers (viscous range),
where energy dissipates into heat through small scale fluctu-
ations; and an inertial spectral range lying in between, where
energy is neither generated and nor dissipate but is transferred
from smaller to larger wave numbers [2]. According to [2], this
exchange depends weakly on the instability of the large scale
flow and the Reynolds number determined by the original flow.
The underlying physical process is the loss of stability of a

sequentially forming basic flow and the formation of a new
velocity field with a finer eddy structure.

Below, this scenario of Richardson–Kolmogorov–Obukhov
turbulence development is applied to a shear layer subject to
a constant external forcing (Kolmogorov’s problem). In this
problem, turbulence arises due to Kelvin–Helmholtz instabili-
ties. This type of instability is most frequently encountered in
mixing layers, where, due to the high velocity gradients, the
influence of viscosity and the walls on the general character-
istics of flow macrostructures is negligible.

Formally inviscid flows are described by the Euler equa-
tions that, in contrast to the Navier -Stokes equations, de-
termine the turbulent flow at infinite high Reynolds num-
bers. Direct numerical simulation of the turbulent flows based
on the Navier-Stokes equations is currently possible only for
Reynolds numbers less than 30000. In this case energy, inertial
and viscous intervals are simulated. In practically important
problems of turbulent flows, the Reynolds number exceeds
106. This shows that the simulation of turbulent flows on the
basis of the Euler equations does not mean a loss of accura-
cy or approximate description than simulation based on the
Navier- Stokes equations. It is a good mechanism for the in-
vestigation of the energy and the inertial range of turbulence.
While modeling using large eddy simulation (LES), subgrid
turbulence models may yield different results with respect to
the mean values of higher moments, but for the quantities de-

∗ INSTITUTE FOR COMPUTER-AIDED DESIGN OF THE RUSSIAN ACADEMY OF SCIENCES, 123056, 2-ND BRESTSKAYA ST.19/18, MOSCOW, RUSSIA



1156

termined by large eddies, numerical simulation results differ
slightly [4].

Through research on the basis of the Euler equations, we
consider the problems of appropriate energy and the inertial
range of the energy spectrum of turbulence without consid-
ering the effects of viscosity. It is necessary to utilize mod-
els that take into account the viscosity and described by the
Navier -Stokes equations [5] when you deal with the calcu-
lation of viscous flows in the range where the energy is dis-
sipated as heat through small-scale pulsations. However, this
kind of modeling is only possible in the range of Reynolds
numbers less than 30000, and requires the use of tera- and
petaflops supercomputers. At the same time simulation based
on the Euler equations can serve as a basis to predict the results
in the energy and inertial intervals, including Kolmogorov’s
spectrum in the homogeneous isotropic turbulence.

This paper shows that the development of the turbulence
occurs when the inertial terms and the pressure field in the
equations of motion begin to form large structures and within
vortices appear. Further evolution of the flow is developed via
large eddies and generating high-frequency part of the spec-
trum. The main aim here is to study the overall dynamics of
the development and the nature of the turbulent flow through
a cascade of vortex instabilities.

Due to extreme complexity and nonlinearity of turbulent
flows, an adequate tool to study them is the numerical simu-
lation [5].

The monotone dissipative- stable difference schemes with
positive operator [6], well-proven for calculating large-scale
flows, were used for modeling of the turbulence in shear lay-
ers in the inviscid case. These schemes are of the second order
of accuracy for smooth solutions and being monotone, do not
use any artificial viscosity, nor smoothing, nor procedures that
limit the flow, and often used in modern computational fluid
dynamics. Numerical simulation was performed utilizing the
MPI parallel programming interface to model systems with up
to 106 computational cells.

2. Mathematical model and the numerical method

The model of compressible inviscid gas is used for the
modeling. Starting point for the constructing numerical cal-
culation schemes is the complete system of the Euler equa-
tions(in case of the Kolmogorov’s problem we used the com-
plete system of the Euler equations with right-hand side) writ-
ten in divergence form in Cartesian coordinates [7]. This is the
equation for the density of the medium:

∂ρ

∂t
+ ∇ · (ρ~v) = 0

The equations for the three components of the momentum
density:

∂(ρu)
∂t

+ ∇ · (ρ~vu) = −∂p
∂x

∂(ρv)
∂t

+ ∇ · (ρ~vv) = −∂p
∂y

∂(ρw)
∂t

+ ∇ · (ρ~vw) = −∂p
∂z
− ρg

and the equation for the density of total energy

∂(ρe0)
∂t

+ ∇ · ((ρe0 + p)~v) = −ρgw

Where t is the time, (x, y, z)are the coordinates; ~v = (u, v, w)is
the velocity vector; is the density; g is the force of gravity,
e0 = e + v2/2 is the specific total energy, e is specific internal
energy. The equation of the state is required to close the sys-
tem of equations. In this paper the equation of the state of a
perfect gas is considered. All calculations were performed in
the SI measurement system.

In numerical simulations we have used the monotone
dissipative-stable difference schemes with positive operator
that does not require the introduction of subgrid turbulence
and special filters for the simulation of free fully developed
turbulence [5]. The proposed method is a generalization of the
explicit hybrid scheme [6]. This scheme has the second order
of accuracy for smooth solutions and being monotonous, does
not use any artificial viscosity or smoothing, or procedures that
limit the flow (flux limiter), often used in some schemes of the
computational fluid dynamics. It is a combination of schemes
with oriented and central differences for the linear transport
equation. For this scheme the monotonicity condition is per-
formed strictly, i.e. any monotonic set of function values at the
grid remains monotonous through the time step. In this tech-
nique, switching between schemes with central and oriented
differences is performed separately for the each characteristic
and depends on the sign of the corresponding characteristics
and sign of a single additional parameter.

Our computational model does not account viscosity and
the surface tension, however, the very design of the scheme
with the requirement of monotonicity provides some nonlinear
dissipative mechanism that ensures the damping of short har-
monics. In other words, the harmonics with a wavelength less
than a certain effective wavelength are retarded. This is con-
firmed by our calculations. Obviously, approximately equals
to a few steps of numerical finite-difference grid. With this
technique, we have performed an extensive series of instabil-
ities calculations [8-11]. The results show a good agreement
with theory and experiment.

3. The problem

The initial stage of the onset of turbulence in three- di-
mensional compressible inviscid shear flow with and without
external power is studied. The integration domain is shaped as
3D parallelepiped in Carthesian coordinates XYZ (Fig. 1). We
investigate the evolution of the structure of shear flow of width
H=1 in case when the initial velocity along Y coordinate lin-
early changes from -V to V inside a shear layer. Boundary and
initial conditions are identical for both shear layer without ex-
ternal force and Kolmogorov’s problem. Boundary conditions
along X and Y coordinates are periodic, along Z coordinate we
used conditions of impermeability. We use initial conditions
for the velocity along x-direction and z-direction inside the
shear layer in form of one Fourier mode:

w = ampl ∗ sin(2πy) ∗ cos(πz)
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and velocity along x-direction is equal

u = ampl ∗ sin(2πy) ∗ cos(πz).

Fig. 1. Computational domain and the basic flow parameters

Let us describe the spectral characteristics of the developing
flow. Consider the spectral representation of kinetic energy
over the vertical coordinate in the middle of the domain. By
analyzing the arising turbulence patterns, we traced the for-
mation of a stable spectral segment for velocity component
fluctuations. For the inertial range, the following estimates for
the fluctuation energy distribution E(k) of the velocity field
[2] were derived from similarity considerations:

E(k) ≈ Θ2/3k−5/3,

where k is the wave number and Θ is the energy dissipation
rate per unit mass. The Kolmogorov “–5/3” power law was
obtained relying on the theory of dimensions, and it must
hold for turbulent motion under the applicability conditions
for the Kolmogorov–Obukhov theory, namely, if the turbulent
motion is homogeneous and isotropic in the inertial range. For
inhomogeneous and anisotropic actual flows, the applicability
conditions are violated and the spectrum in the inertial range
can differ from Kolmogorov’s one.

4. Results

In this work we consider initial stage of the onset of the
turbulence for both problems. It is shown that in case of a
problem without affecting the constant force of the vortex cas-
cade develops as follows: the evolution of the flow at the begin-
ning demonstrates a quasi-two-dimensional nature (the onset
of instability begins with the formation of large-scale vortex).
However, evolving further, the large-scale vortex changes its
shape with time and finally gets destroyed (Fig. 2). Formation
of the vortex cascade in Kolmogorov’s problem is following.
In contrast to the shear layer, the flow loses its stability due
to instabilities in the form of a comb across the excited sur-
face. Over time, this comb is stretched due to the formation
of new instabilities. Large structure is formed implicitly. This

Fig. 2. Vortex cascade. Equiscalar surfaces of the density and spectrum of kinetic energy for shear layer problem. Time moments t=0,5,7,10,12,17
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Fig. 3. Vortex cascade. Equiscalar surfaces of the density and spectrum of kinetic energy for Kolmogorov’s problem. Time moments
t=0,5,7,10,12,17

structure finally also gets destroyed. It leads to the collapse
into smaller vortexes. Thus, in this case the vortex cascade is
also exist (Fig. 3).

Special attention is given to energy spectrum of kinetic
energy. It is shown that as the flow transforms to the turbu-
lent phase there emerge pulsations of velocity of various scale
which leads to the formation of a vortex cascade. Decomposi-
tion of kinetic energy on wave number reveals correspondence
with the energy spectrum of Kolmogorov-Obukhov and the
Kolmogorov “-5/3” power law for both problems. Based on
the numerical results, an analysis of the spectral exponent α
in the shear layer problem

α = −5
3
± 0.3,

produced that. Thus, up to 30% accuracy, the numerical results
suggest that the energy spectrum contains an inertial range.
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