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DETERMINATION OF THERMAL DIFFUSIVITY OF AUSTENITIC STEEL USING PULSED INFRARED THERMOGRAPHY

WYZNACZANIE DYFUZYJNOŚCI CIEPLNEJ STALI AUSTENITYCZNEJ PRZY WYKORZYSTANIU AKTYWNEJ TERMOGRAFII
PODCZERWIENI

The simple method of determining thermal diffusivity of solid materials at room temperature using the pulsed infrared
thermography (IRT) is proposed. The theoretical basis of the method and experimental results are presented. The study was
conducted on austenitic steel 316L. The obtained results show that the thermal diffusivity value of the tested steel determined
by means of pulsed infrared thermography is very approximate to the values given in the literature, obtained by using more
complicated methods. The differences between these values are 0.5%.
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W niniejszej pracy przedstawiono prostą metodę wyznaczania dyfuzyjności cieplnej ciał stałych w temperaturze pokojowej
przy wykorzystaniu aktywnej termografii podczerwieni. Zaprezentowane zostały teoretyczne podstawy metody oraz wyniki
badań doświadczalnych. Badanie przeprowadzono dla stali austenitycznej 316L. Otrzymane rezultaty pokazują, że wyznaczona
wartość dyfuzyjności cieplnej badanej stali jest bardzo bliska wartościom podanym w literaturze, otrzymanym za pomocą
bardziej skomplikowanych metod. Różnica między tymi wartościami sięga zaledwie 0,5%.

1. Introduction

Thermal diffusivity is a material parameter describing
the movement of the isothermal surface during the heat flow
through the material. Therefore, this parameter is sometimes
called the temperature conductivity. Thermal diffusivity α
characterizes a material in a complex way, because it includes
the heat conductivity λ, specific heat c and the mass density
ρ of the material:

α =
λ

cρ
. (1)

The range of thermal diffusivity values of solids is quite
wide. For example, the thermal diffusivity of silver is 1.597×
10− 4 m2

s ; whereas, polystyrene thermal diffusivity is 1.172 ×
10− 7 m2

s . The value of this quantity depends on the chemical
composition of the material and its internal structure. Investi-
gations of measurement techniques for thermophysical prop-
erties of solid materials are of great importance in relation to
the development of new and advanced engineering materials.
It is still necessary to improve and simplify already existing
methods of determining characteristics of materials and devel-
op new ones including methods of determining their thermal
diffusivity.

Reviewing the literature, we can distinguish some meth-
ods of determining thermal diffusivity, such as the Angström

method [1,2], the laser pulse method [2], or a few types of
Poensgen apparatus [3].

The heat conduction equation can be solved for a wide
variety of boundary conditions, and these solutions include
values of the thermophysical properties [4-5]. Thus, the val-
ues of these properties can be determined by measuring ap-
propriate temperature field and comparing the results with
the solution of the heat conduction equation. However, the
inability to satisfy the assumed boundary conditions in the
experiment has led to disadvantages in some of the classic
techniques. One of the disadvantages is trouble with ensur-
ing the temperature increase of the specimen in accordance
with a formula assumed in the boundary conditions [6]. Other
disadvantages are caused by a thermal resistance between the
specimen and its associated heat source. To avoid this difficul-
ty, a flash method of measuring thermal diffusivity has been
elaborated. Such approach was described for the first time in
the seventies of the last century [7-10]. Since then, the world’s
scientific centres have been trying to develop the foundation
of this method taking into account the possibilities offered by
other research fields, such as laser technology [11-14]. How-
ever, all these methods are rather complicated, because of the
manner of specimen preparation, complicated apparatus and
measuring system, and sometimes a relatively long time of the
study. Some of them require the use of advanced mathematical
transformations.
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It seems that at present there is a lack of a method of
determining thermal diffusivity, which would allow a quicker
and simpler way to determine this quantity for solid materials.
This state of the art constitutes the genesis of the study on the
use of the pulsed infrared thermography (ITR) to determine
the thermal diffusivity of solids.

Pulsed IRT is one of the active thermography methods
based on stimulation of the material surface by a heat pulse
(pulse duration is equal to few milliseconds) and recording
the material response, as a time evolution of the surface tem-
perature distribution, by means of an infrared (IR) camera.
Such evolution contains information about thermal diffusivity
of the tested material. The objective of the presented work is
to extract this information.

2. Theoretical foundations of determining thermal
diffusivity

The theoretical basis of determining thermal diffusivity
of materials based on solutions of heat conduction equation
formulated for a plate of a finite thickness when one of its
surfaces is uniformly heated by a short heat pulse. If the sur-
face of the plate is sufficiently large in comparison with the
region of interest, it may be considered as infinite and then the
one-dimensional model of heat conduction can be presumed
(Fig. 1).

The heat conduction equation for the plate was solved on
the basis of the following assumptions:
• The specimen of the measured material is infinite, ho-

mogenous and isotropic plate of constant thickness.
• The surface of the specimen is heated uniformly.
• The initial condition (before the heat stimulation): both

surfaces of the plate are isothermal.
• It is assumed that the transport of heat by convection and

radiation compared with the heat conduction mechanism
are negligible.

Fig. 1. Schematic representation of the infinite homogeneous layer of
material

The solution of such problem determines the temperature
as a function of time at any point of the specimen (Fig. 1.).
The time evolution of temperature of the opposite surface with
respect to the stimulated one is described by the solution for
z = g. This solution includes the thermal diffusivity of the ma-
terial of the plate. Therefore, if the temperature of this surface
is measured in time, it is possible to determine the thermal
diffusivity of the tested material.

The differential equation of heat conduction for the
one-dimensional model has the following form:

∂T
∂t

= α
∂2T
∂z2 +

1
ρc

q, (2)

where: α is the thermal diffusivity of the tested material, ρ
is the mass density, c is the specific heat of the material and
q is the function of heat sources associated with the surface
density of energy Qs delivered to the specimen during its heat
pulse stimulation:

Qs =

∞∫

0

g∫

−0

q (t, z) dt dz. (3)

Eq. (2) has been solved for relatively simple, homogeneous
initial and boundary conditions:

T (t = 0) = To, (4)

∂T
∂z

(z = 0) = 0 and
∂T
∂z

(z = g) = 0. (5)

To obtain the dimensionless form of Eq. (2) we introduce the
following quantities:

t̄ =
t
tc
, z̄ =

z
g
, ϑ =

T − To

Tc
, q̄ =

q
qc
, (6)

where: tc is the characteristic time, g is the thickness of the
specimen, t is time,

T is the current temperature, To is the initial temperature,
Tc and qc, are characteristic values of temperature rise and a
function of heat sources.

tc =
g2

α
[s] (7)

qc =
α

g3 Qs

[
W
m3

]
, (8)

Tc =
1

gρc
Qs =

g2

ρcα
qc[K]. (9)

Neglecting convection phenomenon it can be assumed that,
after a relatively long time the temperature of the opposite
surface with respect to the stimulated one will reach the max-
imum and constant value T∞ = T (t → ∞).

Then
Qc

g
= ρc (T∞ − T0) . (10)

Therefore
(T∞ − T0) =

Qs

gρc
, (11)

taking into account Eq. (9):

(T∞ − T0) = Tc. (12)

Thus, the characteristic temperature rise Tc is equal to the dif-
ference between the maximum temperature T∞ of the opposite
surface related to stimulated one and the initial temperature
T0 of the specimen.

By substituting the dimensionless parameters to the Eqs.:
(2), (4) and (5), we obtain the dimensionless form of the heat
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conduction equation and initial and boundary conditions in
dimensionless coordinates:

∂ϑ

∂t̄
=
∂2ϑ

∂z̄2 + q̄, (13)

ϑ(t̄ = 0) = 0, (14)

∂ϑ

∂z̄
(z̄ = 0) = 0,

∂ϑ

∂z̄
(z̄ = 1) = 0. (15)

The dimensionless quantities are denoted by the bar. The for-
mula for temperature of the tested surface as a dependence of
time will be the function:

ϑ(t̄, z̄ = 1). (16)

To find this function, we use ”cosine” Fourier transform:

[ϑ (t̄, z̄)]k =

1∫

0

ϑ (t̄, z̄) cos k
′
πz̄ dz̄, (17)

where k = 0, 1, 2, 3. . . . . .
Fourier transform of Eq. (13) has the form:

1∫

0

d
∂ϑ (t̄, z̄)
∂ t̄

cos kπz̄dz̄ =

1∫

0

∂2ϑ (t̄, z̄)
∂ z̄2 cos kπz̄dz̄ +

1∫

0

q̄ cos kπz̄dz̄

(18)

After calculating the appropriate integrals and using the adopt-
ed boundary conditions, we obtain:

d [ϑ (t̄, z̄)]k
d t̄

=

− (kπ)2 [ϑ (t̄, z̄)]k +
[
q̄
]
k

(19)

After considering the initial condition and assuming a charac-
ter of the heat source in the form: q̄ = δ (t̄) δ (z̄) , the solution
of the Eq. (18) is the Fourier transform [ϑ (t̄, z̄)]k which has
the following form:

[ϑ (t̄, z̄)]k = exp
[
(−kπ)2 t

]
. (20)

Inverse transform of the function Eq. (20) takes the form of
the following Fourier series:

ϑ (t̄, z̄) = [ϑ (t̄, z̄)]k=0 +

2
∞∑

k′=1

[ϑ (t̄, z̄)]k′ cos kπz̄,
(21)

where k
′
= 1, 2, 3, 4. . . ..

Substituting Eq. (20) to Eq. (21), we obtain:

ϑ (t̄, z̄) = 1+

2
∞∑

k′=1

exp
[
−

(
k
′
π
)2

t̄
]
cos k

′
πz̄.

(22)

For z̄ = 1:

∂ (t̄, z̄)z̄=1 = 1 + 2 (−1)k
′
exp

[(
−k′π2

)]
t̄ (23)

The elements of the series Eq. (23) are getting smaller with t,
with an increase of the number k(long-time regime). So, it can
be seen that for a sufficiently large value of t, error omission
of elements k >1 does not exceed the error of temperature
measurement. Accordance with this approximation:

ϑ (t̄, z̄)z̄=1 = 1 − 2 exp
[
(−π)2 t̄

]
(24)

Substituting to Eq. (24):

t̄ =
t
tc
, z̄ =

z
g
, ϑ =

T − To

Tc
, Tc = T∞ − T0, (25)

we obtain the dimensional form of the expression for the tem-
perature of the specimen surface (opposite to the stimulated
one).

T (t) = T∞ − 2 (T∞ − T0) exp
(
−π

2α

g2 t
)
, (26)

The logarithm of this equation has a linear character:

ln(T∞ − T ) = (−π
2

g2 α)t + ln 2(T∞ − T0), (27)

where
π2α

g2 = A (28)

is the tangent of the slope straight line to the timeline.
So, if one of the specimen surfaces will be heated by a

short impulse of heat and the temperature of the opposite sur-
face will be measured as a function of time, we can determine
the thermal diffusivity α:

α =
g2A
π2 . (29)

3. Experimental procedure and results

The specimen was cut out from 316L austenitic steel sheet
of 1.5 mm thickness. Other dimensions of the specimen were
chosen in such a way, so that the influence of its edges on
the surface temperature distribution was negligible. In order
to ensure high and homogeneous emissivity the specimen sur-
face was coated by graphite paint. The emissivity of graphite
is 0.86. The surface of the specimen was uniformly heated
using the halogen lamp of the pulse energy of 6 kJ. Pulse
duration was 3 ms and the lamp to specimen distance was
equal to 0.5m. Temperature distribution on the opposite sur-
face vs. time was measured by the Titanium 560M infrared
thermographic system (Cedip Company) with InSb detector.
The spectral range of the detector was (3.6-5.1) µm. The ther-
mal sensitivity of the system at 25◦C is 20 mK. The thermal
images (640×512 pixels) were recorded with the frequency
100 Hz. The IR camera and stimulating lamp were located at
the rear side of the specimen (Fig. 2).
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Fig. 2. The scheme of the measuring systems for determining the
diffusivity of solids.
1 is specimen, 2 is flash lamp, 3 is power supply, 4 is IR camera,
5 is computer with appropriate software to enable recording thermal
images of the specimen surface as functions of time

The thermal image is a surface distribution of infrared
radiation power, emitted by the tested surface. This distrib-
ution depends on emissivity of the surface and temperature
distribution on this surface. Thus, knowing the emissivity of
graphite (ε =0.86), the surface temperature distribution was
determined and the average value of temperature of the spec-
imen’s back surface as a function of time was obtained. This
function is presented in the Fig. 3.

Fig. 3. Experimentally determined the surface temperature vs. time.
The marked plato shows that the convection development requires a
certain time interval

In the Fig. 3, there is a fragment of a graph, in which the
average temperature value of the tested surface is constant.
Hence, it may be concluded that the process of convection
does not develop until t = 0.72 s, and it may be not taken into
consideration. The maximum temperature Tmax is equal to the
surface temperature T∞, which would be reached after a long
time if heat convection did not take place, Tmax = T∞.

On the basis of experimental data presented in Fig. 3 the
difference between the maximum value of temperature Tmax
and current values (T ) as a function of time has been calcu-
lated (Fig. 4).

Fig. 4. The difference between the maximum value of temperature
(Tmax) and current values (T ) as a function of time

The dependence of ln (Tmax − T ) on t is presented in
Fig. 5.

Fig. 5. The dependence of ln (Tmax − T ) on time

The graph of this dependence has been approximated by
the straight line:

ln(T∞ − T ) = −16.13t + 0.078 (30)

Fig. 6. The dependence ln (Tmax − T ) vs. time approximated by the
straight line:
(y = −16.13x − 0.078) .

The comparison of the equation of this line with Eq. (27)
(Fig. 6) shows that

π2α

g2 = 16.13 s−1. (31)
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Thus, after transformation of Eq. (31) and substituting the
value of the specimen’s thickness g =1,5 mm, the value of
thermal diffusivity of 316L steel was determined,

α = 16.13
0.00152

π2 = 3.67 × 10−6
m2

s
. (32)

In the TABLE 1, values of thermal diffusivity determined in
a triple repetition of the experiment are presented.

TABLE 1
The results of measurements

Number of
measurement

Determined value
of thermal diffusivity of steel 316L[

m2

s

]

1 3.67 × 10− 6

2 3.67 × 10− 6

3 3.61 × 10− 6

Average value 3.65 × 10− 6

The obtained results indicate the correctness of the pre-
sented approach.

The TABLE 2 presents the comparison of the value of
tested steel determined by means of active thermography with
the steel diffusivity given in the literature [15].

TABLE 2
Comparison of the thermal diffusivity of steel 316L obtained in the

presented work the values for this steel given in [15]

The thermal diffusivity
of steel 316L given in [15]

The thermal diffusivity
of the same steel
determined in the
presented work

3.71 × 10− 6 m2

s
3.65 × 10− 6 m2

s

4. Concluding remarks

The value of the thermal diffusivity of austenitic steel
determined using pulsed IRT is very approximate to litera-
ture ones obtained by using more complicated methods. The
difference between these values is 0.5%.

The advantages of the proposed method are as follows:
• a contactless method,
• a really simple measurement methodology,
• a simple arrangement of a measurement system,
• short time of measuring,
• simple way of specimen preparation,
• making use of the solution of the equation of heat con-

duction for simple boundary conditions,
• easy interpretation of results.

The presented method has also some limitations as a rela-
tively high cost of thermographic system, and the necessity to

cover the surface of the specimen with substance of high emis-
sivity. The presented method allows to determine the thermal
diffusivity of materials only at room temperature
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