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ADVANCED METHODS OF FOUNDRY PROCESSES CONTROL

ZAAWANSOWANE METODY STEROWANIA PROCESAMI ODLEWNICZYMI

The paper discusses two main approaches utilized in contemporary industry to control of discrete and continuous man-
ufacturing processes: Statistical Process Control and Engineering Process Control as well as applications of learning systems
and time-series analysis in the control systems. The use of time-series techniques for anticipated control of selected foundry
processes is presented and positively evaluated using industry data obtained from the green molding sand processing.
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W artykule oméwiono dwa podejscia stosowane we wspéiczesnym przemysle do sterowania dyskretnymi i cigglymi
procesami wytwarzania: Statystyczne Sterowanie Procesem oraz sterowanie techniczne (ang. Engineering Process Control), a
takze zastosowania systeméw uczacych si¢ i analizy szeregédw czasowych w systemach sterowania. Zaprezentowano i poddano
pozytywnej ocenie wykorzystanie technik szeregéw czasowych w antycypacyjnym sterowaniu wybranymi procesami odlewni-
czymi, z uzyciem danych przemyslowych uzyskanych z procesu przerobu wilgotnych mas formierskich.

1. Introduction

Foundry technology is recognized as one of the most
complex technologies in manufacturing industry. It includes a
large number of highly diversified processes, related to prepa-
ration and processing of alloys and non-metallic materials and
making of the shaped final products, i.e. castings as well as ex-
pendable molds and patterns. In contemporary foundry indus-
try high production volumes and production rates, combined
with increasing quality requirements, make a proper control
of production processes one of the key issues in a foundry
operation.

There are two main approaches to control of manufac-
turing processes: Statistical Process Control (SPC) and Engi-
neering Process Control (EPC). SPC techniques are applied
to monitor the processes, whereas EPC techniques are used to
regulate them. Originally, SPC was first applied in the parts
industry, where discrete processes are typical, whereas EPC
comes form the process industry, where continuous process-
es dominate. Both control strategies are aimed at reduction
of process variability, however, they seek to accomplish this
objective in different ways [1]. SPC assumes that the process
output can be described by statistically independent observa-
tions fluctuating around a constant mean and is intended to
detect signals which represent the special (assignable) causes
of external disturbances increasing the process variation. EPC
counteracts the process disturbances by making adjustments
to process variables in order to keep the output quality pa-

rameter on target. These disturbances are usually not a white
noise but exhibit a dependence on past values, i.e. they are
auto-correlated. Hence, it is possible to anticipate the process
behavior based on past observations and to control the process
and its outputs by adjusting the input variables [2].

To identify and understand the cause of process changes,
a unified control framework should be applied to regulate a
process using feedback control and using the diagnostic capa-
bility of SPC to detect unexpected disturbances to the process.
However, it should be noticed that application of EPC inte-
grated with SPC can cause some problems as the EPC feed-
back compensation mechanism affects the out-of-control de-
tection by SPC and degrades the output quality once suddenly
assignable causes are removed [3].

In the foundry industry a large variety of processes can be
observed. An example of a continuous process is the molding
sand processing, whereas molding itself is a discreet process.
The two approaches to the process control, i.e. SPC and EPC
are widely utilized.

The most commonly used type of EPC in manufacturing
industry is probably the feedback control. It uses deviations of
the output from the target to calculate the amount of adjust-
ment. EPC requires a process model in a form of input-output
relationship which, for the feedback control, can utilize the
time-series analysis tools (see, e.g. [2]). Application of the
time-series models to control of foundry processes is the main
subject of the present study.
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2. Assessment of time-series capabilities to anticipated
control of foundry processes

Time-series analysis is one of the data mining methods,
which deals with series of data recorded in a chronological or-
der, usually in regular time intervals or in another sequences.
There are two main purposes of that kind of analysis: the dis-
covery of the nature of a given process and prediction of the
future values. The time-series prediction can be considered
as a particular case of the regression task, where the input
and output variables are the same quantity but measured at
different time moments.

As indicated earlier, the time-series analysis can be a
useful tool in the feedback control of manufacturing process-
es, providing they are able to anticipate the process behav-
ior based on past observations. In the present study, the
time-series predictive capabilities are evaluated, based on real
data acquired from green sand processing.

2.1. Methodology

The analysis and prediction of time-series can be done by
many different methods. Time-series models have three classi-
cal types: Auto Regressive (AR), Integrated (I) and with Mov-
ing Average (MA). The compositions of those three classes
make the popular autoregressive with moving average models
(ARMA) as well the autoregressive integrated with moving
average (ARIMA). An alternative is an application a general-
ized regression model, described in detail in [5]. The idea is
to utilize a multivariate regression model in which the input
variables are values of the given quantity recorded in sever-
al consecutive moments, and the output variable is its next
value (i.e. shifted by one measurement from the last input
point). The regression model is built for the residual data, i.e.
obtained by subtraction the following components from the
original data: the mean’s trend, the variability amplitude trend
and the periodical component. The idea of this methodology
is to use a regression model for modeling finer changes than
those which can be easily described by trends and periodicity.

In the present work three types of the multivariate re-
gression models were considered: a linear regression (LR),
regression tree (RT) and artificial neural network (ANN), as
proposed in [5]. For the RT modeling the well known C&RT
algorithm was used, assuming the minimum number of records
in a node equal 2 and the 10-fold cross-validation procedure
for finding optimum trees. For the neural models the MLP-type
networks with one hidden layer including 3 to 5 neurons, were
built. The test subsets, used for checking the stopping criterion,
contained 20% of all data records. All the computations for
RTs and ANNs were done using Statistica v8 software. For all
types of the regression modeling, 5 consecutive points were
taken as the input variables.

The methodologies used in the mean’s trend, variability
amplitude trend and periodicity computations as well as for the
estimation of information content in residual data were similar
to those applied in the previous works [4, 6]. These compu-
tations were made using the authors’ own software having a
wide range of capabilities.

The prediction capabilities of the regression models were
also compared to simple predictions based on the trends and

periodicity only, i.e. assuming zero values for new points in
the residual data.

The green sand data were collected in a large iron foundry
during the period of 14 months of normal production. The
original foundry database of over 1960 records included the
following properties of the molding sand: four green sand
properties measured at the outlet of the muller: moisture con-
tents, permeability, compression strength, compactibility as
well as temperature of the used sand. For the purposes of
the time-series analysis two types of records were extracted
from the original foundry database:

Data type 1: two series of 100 consecutive measurements
taken form the original data, one from the beginning and one
from the middle of the whole period.

Data type 2: four quantities characterizing a working day:
the first measurement of a day, average of the first 3 measure-
ments of a day, average of a whole day and average of the last
3 measurements of a day. Each of the four data sets of this
type included 85 records, corresponding to 17 full sequences
of 5 working days from Monday to Friday which could be
found in the original data.

Altogether, 30 data sets have been prepared for the analy-
sis. In each of the sets the first portions of records were used
for finding the trends and periodicity as well as for build-
ing the residual data models (further referred to as ‘training’
data) and the last 5 records were used for evaluation of the
time-series predictive capabilities (further referred to as ‘new’
data). These were evaluated on the basis of relative prediction
errors, defined as a ratio of absolute difference between pre-
dicted and observed values to the whole observed variability
range of the variable, averaged over 5 new points.

2.2. Results

In Fig. 1 an example of the main components of the
time-series analysis and the predictions made for this same
case are shown. In Fig. 2 some representative examples of
prediction accuracies are presented.
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Fig. 1. Main components and predictions of the time-series analysis
for green sand compression strength data type 1; 3"¢ degree polyno-
mial was used as the mean’s trend

The general observation is that the relative errors vary
between 10% and 20% in most cases and of the total 50 pre-
diction series made in this study, only 3 of them exceed 30%
(all obtained from one type of model — regression tree). For
the industrial process it means that, with a great confidence,



the operators would be able to predict the next value of a
given sand property with the accuracy of 1/5 of its whole
range. This would enable them to adjust the current amounts
of the additives with a much greater accuracy than if they
rely only on the current measurements. These results are even
better than those obtained previously for the melting process
of the grey cast iron [6], where the alloy’s chemical compo-
sition predictions have reached the accuracy of about 1/3 of
the appropriate ranges of chemical components.

(@ (b)

O Without modeling OLR ®RT EANN OWithout modeling OLR BRT ®ANN

50% 50%
40% 40%
30% 30%
20% 20% +
10% + 10% 1
0% -
0% -
™ c o
£5 £ &, £ S gz 2 s5_ oz 8
2 ® 2D = 4 72 3 S 3 5
S g o o c ° @ 2 e © 2 B = o
S o £ 50 & o S q o o < 15 @
g £4G g £ =° £ s 8 = g
o 3 o 2 E gﬁ E >
o o 8 [

Fig. 2. Exemplary prediction errors (averaged over 5 new data points),
obtained assuming the 3rd degree polynomial as the mean’s trend
function: (a) data type 1 (first 100 measurements), (b) data type 2
(averages of a day)

Another important observation is that the advanced re-
gression models have appeared to be worse compared to the
multivariate linear regression. The best results were obtained
without modeling of residual data, i.e. based on trends and pe-
riodicity only. This could possibly be a result of low amounts
of the information content in the residual data. In Fig. 3 the
ratios of prediction errors obtained with regression modeling
of residual data to those obtained form trends and periodicity
only are plotted as a function of the information content in
the residual data. For the data type 1 the positive results of
application of residual data modeling were achieved for large
information contents, particularly the linear regression. For the
data type 2 this observation is not so clear, however, the best
result was also obtained for a high information content. Similar
results were found for the grey iron melting process [6].
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Fig. 3. Ratios of prediction errors obtained for new data with residual
data regression modeling to those obtained from trends and period-
icity only, in a function of the information content in the residual

data; (a) for type 1 data sets, (b) for type 2 data sets

In the present study, an influence of the form of mean’s
trend line function was also examined. The tests were made for
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the both data types (1 and 2) with extreme values of prediction
errors (averaged over all models), obtained previously. For all
the data sets the best performance was achieved with the 37¢
degree polynomial assumed as the trend function. This result
can be possibly attributed to the fact that a less ‘flexible’ trend
function generally increases the variability of the residual data.
This reduces the role of the predictions based on the trends
and periodicity and increases the expectations of the residual
data modeling. It is worth noticing that for a single point ex-
trapolation (one point forward predictions) there is a very little
threat to obtain a significant divergence between the real trend
in data and the trend approximated by 3¢ degree polynomial
function. The application of linear trend significantly reduced
prediction errors only for two advanced models using learning
systems (RTs and ANNs) and only in the cases where these
errors were high compared to the simple methods.

3. Summary and conclusions

Contemporary foundry industry requires advanced con-
trol methods, aimed at stabilization of the manufacturing
processes and including fault prevention and diagnosis for
the processes and the products. The two main approaches to
process control, Statistical Process Control and Engineering
Process Control, are useful in control of foundry processes,
characterized by especially large diversity of technologies, ma-
terials and production problems.

The paper presents methodology and results of the as-
sessment of predictive capabilities of the time-series analy-
sis, based on green molding sand processing data collected
in a large iron foundry. The main finding, also supported by
some previous works, is that the time-series analysis can be a
valuable tool for the anticipated control of important foundry
processes. In particular, the authors’ approach based on the
mean’s trend, amplitude trend and periodicity component, pos-
sibly combined with multivariate regression modeling of the
residual data, appeared to be very satisfactory in accurate pre-
dictions of the expected values of process or product char-
acteristics. However, the modeling of residual data must be
done with care and should be limited to the cases, in which
the information content in these data is definitely significant.

A further work is desirable, aimed at developing prac-
tical control procedures for typical foundry processes. They
should include various problems, such as detection of distur-
bances in auto-correlated processes, the actions that should
be taken when a process disturbance is identified and analysis
of process changes due to corrections made according to the
time-series analysis predictions.
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