
A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S

Volume 58 2013 Issue 3

DOI: 10.2478/amm-2013-0088

J. DUDA∗, A. STAWOWY∗

OPTIMIZATION METHODS FOR LOT-SIZING PROBLEM IN AN AUTOMATED FOUNDRY

ALGORYTMY PLANOWANIA PARTII PRODUKCYJNYCH W ZAUTOMATYZOWANEJ ODLEWNI

In the paper we studied a production planning problem in a mid-size foundry that provides tailor-made cast products in
small lots for a large number of clients. Assuming that a production bottleneck is the furnace, a mixed-integer programming
(MIP) model is proposed to determine the lot size of the items and the required alloys to be produced during each period
of the finite planning horizon that is subdivided into smaller periods. As using an advanced commercial MIP solvers may
be impractical for more complex and large problem instances, we proposed and compared a few computational intelligence
heuristics i.e. tabu search, genetic algorithm and differential evolution. The examination showed that heuristic approaches can
provide a good compromise between speed and quality of solutions and can be used in real-world production planning.

Keywords: Application of information technology to the foundry industry, Production planning, Lot-sizing problem

W pracy przedstawiono problem planowania produkcji w odlewni średniej wielkości, która dostarcza odlewy na zamówie-
nie dla dużej liczby klientów. W takim problemie konieczne jest określenie wielkości partii produkcyjnej oraz ilości i gatunku
metalu w każdym okresie skończonego horyzontu planowania, który jest podzielony na mniejsze podokresy. Przy założeniu,
że wąskim gardłem jest piec do topienia metalu, zaproponowano programowanie całkowitoliczbowe mieszane (Mixed-Integer
Programming – MIP) jako model planowania i harmonogramowania produkcji w odlewni. Jako że użycie zaawansowanych
komercyjnych solverów może być niepraktyczne dla złożonych problemów, zaproponowano i porównano trzy heurystyki in-
teligencji obliczeniowej tj. tabu search, algorytm genetyczny i ewolucja różnicowa. Eksperymenty obliczeniowe wykazały, że
algorytmy heurystyczne zapewniają zadowalającą szybkość i jakość rozwiązań.

1. Introduction

In this paper we studied a production planning problem
in a mid-size foundry that provides tailor-made cast products
employing several types of metal alloys in small lots for a
large number of clients. In such production planning prob-
lem, it is necessary to determine the lot size of the items and
the required alloys to be produced during each period of the
finite planning horizon that is subdivided into smaller peri-
ods (work shifts). Decision maker must take into account two
main criteria: timeliness of orders and maximizing production
capacity bottlenecks. The stated problem is described by lot
scheduling models, from which the most explored is Mixed
Integer Programming model [7]. As exact commercial solvers
are impractical for large problem instances, we proposed to
apply some heuristic search methods to solve the MIP model.

The aim of this paper is to explore whether computa-
tional intelligence techniques may be used successfully to-
wards small and medium-sized foundries when planning and
scheduling decisions are taken. Our paper is organized as
follows. Section 2 provides a literature review on foundry
lot-sizing and scheduling problem. In Section 3, the details of
proposed model and heuristics are given. The computational

experiments are described in Section 4, and the conclusions
are drawn in Section 5.

2. Review of previous research

There are only a few studies reported on the lot-sizing
problem for production planning and scheduling in foundries.

Santos-Meza at al. [6] have studied a lot-sizing problem
in an automated foundry when the production bottleneck is the
furnace. The problem consists of two decisions: what alloys
should be produced in the furnace in each period, and the
quantity of items to be produced in each moulding machine.
The objective function is to minimize the total production
costs. The authors have proposed problem-specific heuristic
to solve large practical integer programming problem. In this
case some production constraints are relaxed without loss of
optimality.

Araujo et al. [1] have dealt with the same problem preva-
lent in small market-driven foundries. A fast relax-and-fix (RF)
approach is formulated to solve real-life instances in reason-
able computing time: at the R step all integer variables are
relaxed and the relaxed problem is solved using local search
heuristics developed by authors, while at the F step partially

∗ AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF MANAGEMENT, GRAMATYKA 10, 30-067 KRAKOW, POLAND



864

fixed problem is solved to optimality with the CPLEX MIP
solver.

Park and Yang [5] have introduced a Linear Programming
(LP) optimization model for casting scheduling in job-shop
type foundries. The primary variable in scheduling model is
the amount of castings produced in each shift; the authors have
argued that the objective function to maximize alloy utiliza-
tion percentage and entire constraints reflecting real casting
conditions can be represented in linear forms. The LP model
generates an optimal casting sequence resulting in the maxi-
mum use of molten alloy.

Gauri [3] demonstrated that the product-mix planning
problem for batches of melt can be modeled mathematically.
Weighted integer goal programming formulations have been
developed to determine the optimal product-mix for the im-
mediate next heat in a small scale iron foundry, which can be
useful to general iron foundries.

More recently, Camargo at al. [2] have considered the
production planning problem in small foundries. The authors
have proposed the heuristic that solves the problem in a hierar-
chical way. A genetic algorithm is used to explore a larger set
of alloy sequences and a knapsack problem algorithm deter-
mines the lot size of the items for each furnace loading. The
computational experiments show that the proposed approach
is better than the methods described in the literature.

Teixeira at al. [8] have proposed a binary integer
model for production scheduling problems in market-driven
foundries. The objective is to minimize the cost of manu-
factured products based on balancing and synchronizing the
moulding, pouring and finishing steps, aimed at eliminating
high stock levels, rationing the use of production resources and
foundry furnaces. Synchronization among the three production
phases directly reduces production cycle time and indirectly
improves quality of products.

3. Modelling approach

The mathematical model presented in this section results
from an extension of Araujo et al. lot sizing and scheduling
model for automated foundry [1].

3.1. Model description

We use the following notation to model production plan-
ning in a foundry:
Indices
i = 1, ..., I− produced items; k = 1, ...,K – produced alloys
t = 1, ...,T− working days; n = 1, ...,N – sub-periods (i.e.
furnace loadings)
Parameters
dit− demand for item i in day t; wi – weight of item i
ak

i = 1, if item i is produced from alloy k, otherwise 0; stk –
setup loss of capacity (kg) resulting from a setup for alloy K
sk – setup penalty for alloy k
C – loading capacity of the furnace
hit , h

+
it− penalty for delaying (–) and storing (+) production of

item i in day t
Variables
Iit , I

+
it− number of items i delayed (–) and stored (+) at the

end of day t

zk
n = 1, if there is a setup of alloy k in sub-period n, otherwise

0
yk
n = 1, if alloy k is produced in n in sub-period, otherwise 0

xin− number of items i produced in sub-period n
Production problem as a MIP formulation can be defined

as follows:

Minimize
I∑

i=1

T∑

t=1

(hitIit + h+
it I

+
it ) +

K∑

k=1

N∑

n=1

(skzk
n) (1)

subject to:

I+
i,t−1−I−i,t−1+

N∑

n=1

K∑

k=1

xinak
i −I+

it +I−it > dit , i = 1, ..., I , t = 1, ...,T

(2)
I∑

i=1

wixinak
i + stkzk

n 6 Cyk
n, k = 1, ...,K, n = 1, ...,N (3)

zk
n > yk

n − yk
n−1, k = 1, ...,K, n = 1, ...,N (4)

K∑

k=1

yk
n = 1, n = 1, ...,N (5)

Iit , I
+
it , xit > 0, Iit , I

+
it , xit ∈ =, Ii0, I

+
i0 = 0, i = 1, ..., I (6)

The goal (1) is to find a plan that minimizes the cost of de-
layed production, storage of finished goods and the cost of
setup times if the alloy is changed during furnace load.

Equation (2) allows for calculation of delayed and stored
production at the end of a given period. Constraint (3) ensures
that the furnace capacity is not exceeded during a single load.
Constraint (4) sets variable zk

n to 1, if there is a change in
alloys in the subsequent periods, while constraint (5) ensures
that only one alloy is produced in a given sub-period.

3.2. Solution methods

The planning problem for a foundry was intentionally
written as MIP formula in order to compare two main ap-
proaches of finding solution for real-world production prob-
lems. In the first approach a branch and cut (B&C) method
and its derivatives are usually used. If the problem is well
constrained and the MIP formulation is adequate, this method
is able to find optimal solution almost instantly or, for larger
problems, in a reasonable time. However, if a problem is large
and complex (e.g. belongs to NP-hard class) or it cannot be
easily written as MIP formulation, either constraint program-
ming (CP) or various heuristics can be applied as an alternative
approach to the B&C method. Constraint programming uses
such techniques like constraint propagation with backtracking
to continuously refine the solution space. Among the heuristic
methods, the ones based on metaheuristics like simulated an-
nealing, genetic algorithms, tabu search are frequently used,
as usually they allow to achieve a good approximation of the
optimal solution in acceptable time. In the experiments that
will be described in the following section, three metaheuris-
tics are used: genetic algorithm (GA), tabu search (TS) and
one of the youngest metaheuristics that was proved to be very
efficient for many problems – differential evolution (DE). An
extensive description of them can be found in [4]. We will
focus on the modifications that have been introduced to the



865

standard algorithms: all the modifications has been applied
after a large number of experiments, and the ones given the
best results have been finally chosen.

Proposed GA uses a special representation of solution
that is based on three vectors (chromosomes): a vector x̄ rep-
resenting the number of items that are produced in a given
period, a vector ō representing the order numbers of the pro-
duced items, and a vector ā representing alloy number that is
produced during this period. Such representation allowed for
the development of three different mutation operators (pertur-
bation schemes), that were applied to the solutions in a new
population: the first mutation (applied with the probability
pm1 = 0.02) simply adds or subtracts 1.0 for the randomly
chosen element in the x̄ vector, the second mutation (pm2 =

0.002) randomly exchanges two order numbers in the solu-
tion (provided that they are made from the same alloy), and
the third mutation (pm3 = 0.002) randomly changes an alloy
number and then adjusts the order numbers to this new alloy.
In order to reduce solution space, the length of vectors is set
to N*MAX CHANGES, where MAX CHANGES represents the
maximum number of orders that are allowed to be produced
in a single sub-period. The GA algorithm uses standard one
point crossover (adjusted to the representation, applied with
pc = 50% probability) and binary tournament as a selection
scheme. Population size is set to 50 individuals.

Our tabu search (TS) algorithm utilises the same rep-
resentation as the GA (standard representation with all xin

variables provided worse results) and uses three kind of neigh-
bourhood search that are analogous to the mutations proposed
for the GA. Each type of perturbation has its own tabu list
that blocks the moves at the same position in the solution for
a given number of iterations (tabusize = T*N). No aspiration
function is used.

Finally, proposed differential evolution (DE) algorithm
uses the representation analogous to the MIP solver (with all
xin variables) and applies RandToBest/2/Bin strategy, as it oc-
curred to be the most efficient in the experiments. This means
that new solution is created on the basis of the best solution
found so far and three other, randomly chosen solutions. As
the binomial crossover may produce infeasible solutions (i.e.
more than one alloy is produced in the given period n), a
special repair algorithm is applied. If orders with the different
alloys are planned for production in a period n, the one with
the highest number of items is chosen, and the orders requiring
different alloy are removed from the plan. Population size is
set to 30 individuals, scale parameter for mutation is set to
0.7 and the crossover rate (pCR) to 0.1. In order to assess
the quality of the solutions achieved by the metaheuristics the
most current versions (12.5) of CPLEX and CP solvers were
used.

4. Computational experiments

The experiments were conducted on the basis of problem
instances generated in the same way as proposed by Araujoa
et. al. [1]. Ten instances had been generated for the small
problem size (I =10, K =2), medium size (I =50, K =10) and
the largest size (I =100, K =20). Each problem had a five-day
planning horizon with 10 sub-periods each day. Contrary to

the experiments performed by Araujoa et. al. only moderate
tightness of furnace capacity (i.e. Cap=1.0*C) was consid-
ered. Each algorithm (except of CLPEX) was run 20 times for
a given instance and the time limit was set to 100, 250 and
450 seconds, depending for the problem size. The results were
presented in Table 1 as the relative deviation from the CPLEX
solution for the best solution (out of 20) and average solution
provided by a particular metaheuristic and, in the last column,
the constraint programming solver. A negative number means
that the metaheuristic achieved a better result than CPLEX in
a given amount of time.

TABLE 1
Relative deviation of metaheuristics from the CPLEX solution

Small problems (I =10, K =2)

GAbest GAavg TSbest TSavg DEbest DEavg CP

avg. -0.09 -0.01 0.32 1.77 -0.03 0.05 2.14

st.dev. 0.08 0.04 0.46 0.96 0.10 0.10 0.52

Medium problems (I =50, K =10)

GAbest GAavg TSbest TSavg DEbest DEavg CP

avg. -0.13 -0.02 0.56 1.01 0.29 0.37 3.07

st.dev. 0.06 0.08 0.26 0.51 0.14 0.4 0.37

Large problems (I =100, K =20)

GAbest GAavg TSbest TSavg DEbest DEavg CP

avg. -0.03 0.15 0.44 0.58 0.43 0.51 2.18

st.dev. 0.03 0.07 0.14 0.15 0.05 0.06 0.15

Best results achieved by our genetic algorithm were bet-
ter than the ones achieved by CPLEX for all problem sizes.
Differential evolution occurred to be competitive to GA and
CPLEX only in the case of small problem instances. Tabu
search provided usually the worst results of all tested meta-
heuristics with the except for large problems, when the best
results achieved by DE were on average the worst. Most proba-
bly, this is due to the fact that TS operates on a single solution,
while the remaining algorithms operate on the population of
solutions. We also tested simulated annealing algorithm in the
version described by Araujoa et. al., but did not managed to
achieve feasible solutions (Araujoa et. al., however, used their
SA for adjusting a rolling horizon with much smaller solution
space than in our experiments). It is worth to observe that
constraint programming was significantly weaker even than
the worst-performing tabu search metaheuristic.

5. Conclusions

In this paper, the computational intelligence algorithms
are proposed for the lot-sizing and scheduling problem in au-
tomated foundries. The use of heuristics is motivated by the
fact that commercial software like CLPEX can solve produc-
tion planning problems only if such plant are written as MIP
formulation. Although MIP solvers are currently able to handle
problem instances of large size, the results provided by com-
mercially available alternative methods (like CP) still cannot
be seen as satisfactory. Algorithms that are based on universal



866

metaheuristics are able to obtain significantly better results
than constraint programming and, when properly tuned, they
can even compete with the state-of-art CPLEX solver. The ge-
netic algorithm proposed by us can achieve better results than
CPLEX, and it can potentially handle more complex prob-
lems, which can be expressed in any form (including if-then
rules, external functions) that allows to assess the quality of
solutions. There are a number of research directions that can
be considered as useful extensions of this research, concerning
both further metaheuristics development and production plan-
ning modelling that more accurately describes the real-world
problems.

REFERENCES

[1] S.A. d e A r a u j o, M.N. A r e n a l e s, A.R. C l a r k, Lot
sizing and furnace scheduling in small foundries, Comput Oper
Res. 35, 916-932 (2008).

[2] V. C a m a r g o, L. M a t t i o l l i, F. T o l e d o, A knapsack
problem as a tool to solve the production planning problem in
small foundries, Comput Oper Res. 39, 86-92 (2012).

[3] S.K. G a u r i, Modeling product-mix planning for batches of
melt under multiple objectives in a small scale iron foundry,
Prod Eng Res Dev. 3, 189-196 (2009).

[4] M. G e n d r e a u, J.-Y. P o t v i n (ed.), Handbook of Meta-
heuristics. International Series in Operations Research & Man-
agement Science 146 (2010).

[5] Y.K. P a r k, J.-M. Ya n g, Optimization of mixed casting
processes considering discrete ingot sizes, J Mech Sci Technol.
23, 1899-1910 (2009).

[6] E. d o s S a n t o s - M e z a, M.O. d o s S a n t o s, M.N.
A r e n a l e s, A lot-sizing problem in an automated foundry,
Eur J Oper Res. 139, 490-500 (2002).

[7] A. S t a w o w y, J. D u d a, Models and algorithms for pro-
duction planning and scheduling in foundries – current state
and development perspectives, Arch Foundry Eng. 12, 2, 69-74
(2012).

[8] R.F. T e i x e i r a, F. F e r n a n d e s, N. P e r e i r a, Bi-
nary integer programming formulations for scheduling in
market-driven foundries. Comput Ind Eng. 59, 425-435 (2010).

This article was first presented at the VI International Conference ”DEVELOPMENT TRENDS IN MECHANIZATION
OF FOUNDRY PROCESSES”, Inwałd, 5-7.09.2013

Received: 20 January 2013.


