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INACCURACY IN SELF-SYNCHRONISATION OF VIBRATORS OF TWO-DRIVE VIBRATORY MACHINES CAUSED BY
INSUFFICIENT STIFFNESS OF VIBRATORS MOUNTING

ZAKŁÓCENIA SAMOSYNCHRONIZACJI WIBRATORÓW DWUNAPĘDOWYCH MASZYN WIBRACYJNYCH NA SKUTEK
NIEPEŁNEJ SZTYWNOŚCI POSADOWIENIA WIBRATORÓW

The influence of an insufficient stiffness of inertial vibrators mounting to a vibratory machine body on phase angles of
unbalanced masses and on a machine motion was analysed in the paper.

The mathematical model of the effect was developed and the analytical dependencies determining the influence of the
mounting elasticity on the synchronisation and machine movement – useful in engineering practice – were obtained.
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W pracy poddano analizie wpływ nie w pełni sztywnego zamocowania wibratorów inercyjnych do korpusu maszyn
wibracyjnych na kąty fazowe mas niewyważonych i ruch maszyny.

Zbudowano model matematyczny zjawiska i uzyskano zależności analityczne określające wpływ podatności zamocowania
na przebieg synchronizacji i ruch maszyny, przydatne w praktyce inżynierskiej.

1. Introduction

There are situations, met in industrial prac-
tice, that two-drive vibratory machines utilising the
self-synchronisation of vibrators, are not properly operat-
ing regardless of fulfilling all conditions stipulated in the
references [1]. Passing over the influence of the asymme-
try of drive or influence of collisions with a material
feed to synchronization [2,3,4], the insufficient stiff-
ness of vibrators mounting, found out in industrial tests
[5], can be considered one of the essential reasons of
such situation. As it was shown in the last quoted paper,
the insufficient stiffness of vibrators mounting can lead to
a substantial change of the synchronisation phase angle
and due to that, to a completely wrong machine work.

Since this effect was not theoretically investigated,
the aim of the hereby paper is developing of the mat-
hematical model of this effect and the derivation of
computational dependencies allowing to estimate the
necessary stiffness of vibrators mounting.

In order to do that the diagram of two-vibrator
over-resonance machine, shown in Fig. 1, will be con-
sidered.

Fig. 1. Two-vibrator over-resonance vibratory machine calculation
model

where:
m – unbalanced mass [kg],
e−eccentric of a rotor unbalance [m],
Mk, – machine body mass [kg],
M = Mk+2m – mass of the vibrating machine part (body
and vibrator) [kg],
C – mass centre of the body with unbalanced masses
brought to the vibrator axis of rotation
J – central moment of the body inertia with unbalanced
masses brought to the vibrator axis of rotation [kgm2],
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Jzr – moment of inertia of the vibrator together with
engine, calculated versus the axis of rotation [kgm2],
kx, ky, kξ , kη – coefficients of elasticity of the body sup-
porting system along axes: x , y and ξ, η [N/m]– corre-
spondingly,
Ωz1,Ωz2 – moments exerted to the rotating masses orig-
inated from the drive and resistance to motion [Nm],

The problem formulated above cannot be solved di-
rectly by classic methods (e.g. by the Blechman’s in-
tegral criterion [1]), since an elastic connection of vi-
brators with the machine body significantly widens the
problem and in consequence does not allow to obtain
the analytical solution in a form useful in an engineering
practice.

In order to solve this problem the averaging method
[6], in which the advantage was taken of the fact that
quantitative connections occurring for real systems en-
able taking two essential simplifying assumptions, was
applied in the paper.

10 It was assumed, that deformations in places of vi-
brators mounting are of a quasi-static character, it means
that the deformation value is proportional and cophasal
to the force transmitted by the vibrator. The correctness
of this assumption can be shown on the basis of the
following estimation:
• for typical machines, softly elastically placed and vi-

brating with an amplitude A and frequency ω, the
combined excitation force of n vibrators, each of a
force P, imparts to the machine of a mobile mass M,
the amplitude of acceleration:

nP
M
≈ Aω2 (1)

• frequency ωψ of natural vibrations of the vibrator on
its elastic mounting - equals:

ωψ =

√
kψ
mw

(2)

where mw denotes the mass of the vibrator together with
its casing, while kψ is the coefficient of elasticity of its
mounting.

If it is assumed that the vibrator mounting deforma-
tion – under an influence of its excitation force – should
not exceed the machine vibration amplitude A, i.e.

P
kψ
6 A (3)

and the excitation force P is approximated in accor-
dance with the expression (1), then according to (2) ,for
kψ > P/A (3), the following dependence is obtained:

ωψ >

√
Mω2

n
· 1
mw

= ω

√
M

n · mw
(4)

Since the machine mass M is significantly larger than
the total mass of vibrators n ·mw, the vibrator frequency
ωψ on its support is significantly larger than the working
frequency ω.

This means the under-resonance operation and al-
lows assuming a quasi-static character of deformations
of vibrators mounting elements.

20 It was assumed that the component originated
from the Coriolis acceleration can be omitted at the de-
termination of the vibrators axles acceleration.
• Acceleration of the axle of the ithvibrator (Fig.1) is

written in a form:

āi = āiu + āiw + āicor (5)

where individual terms mean:
āi− absolute acceleration of the ith vibrator axle,
āiu− acceleration of transportation, resulting from

the translatory and angular motion of the machine,
āiw− relative acceleration, resulting from the vibra-

tor axle movement in the direction ψ determined by the
elasticity direction of the vibrator mounting system,

āicor = 2ω̄u × v̄w− Coriolis acceleration.
The order of the tangential component (normal com-

ponent = 0) of the relative acceleration in vibrating mo-
tion with the amplitude Aψ and frequency ω

|āiw|max = Aψω2

is now compared with the order of the Coriolis acceler-
ation:

|āicor |max = 2ωu · Aψω · sin(ω̄u, v̄iw)

Since the transportation angular frequency ωu is sev-
eral times smaller (if it exists at all) than the working
frequency ω, which results from the dimensional ratios
and linear vibrations amplitudes of vibratory machines,
the following occurs: aicor<<aiw. This allows to omit the
Coriolis acceleration in a further analysis.

2. Mathematical analysis of the self-synchronisation
effect in the system of an insufficient mounting

stiffness of individual vibrators

As the first analysed case the system, in which each
of vibrators is placed independently will be considered.
The stiffness of the ith (i=1,2) vibrator mounting to the
body is insufficient, but characterised by the possibility
of shifting the axle along the direction defined by angle
ψ (Fig.1), resulting from the limited elasticity kψ in this
direction.

In accordance with the idea of the averaging method,
the equations of motion of the machine body were writ-
ten with distinguishing slow- and fast-changing effects.
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Thus, assuming the equality of angular velocities of both
vibrators φ̇1 = φ̇2 and their ‘slow-changes’ (ω ≈ const),
it is possible to write the equation of motion of the body
in the absolute system ξ, η, in a first approximation form:

M ξ̈ + kξξ = meω2[sin φ1 + sin φ2] (6a)

Mη̈ + kηη = meω2[cos φ2 − cos φ1] (6b)

Jα̈+kyl2α = meω2r[sin φ2−sin φ1]+meω2R[cos φ1−cos φ2]
(6c)

where: ξ, η – absolute coordinates determining the po-
sition of the body mass centre,

α− angle of rotation of the body,

kξ = kx cos2 β + ky sin2 β

kη = ky cos2 β + kx sin2 β,

• the remaining notations are the same as in Fig. 1.
Denoting ϕ1 − ϕ2 = ∆ϕ = const and assuming

ϕ2 = ωt, equations (6a, 6b, 6c), after rearrangements,
can be presented in a form:

M ξ̈ + kξξ = meω2
√

2(1 + cos ∆φ) sin(ωt + δ) (7a)

where: sin δ =
sin ∆φ√

2(1+cos ∆φ)
, cos δ =

1+cos ∆φ√
2(1+cos ∆φ)

Mη̈ + kηη = meω2
√

2(1 − cos ∆φ) sin(ωt + κ) (7b)

where: sin κ =
1−cos ∆φ√
2(1−cos ∆φ)

, cos κ =
sin ∆φ√

2(1−cos ∆φ)

Jα̈ + kyl2α = meω2D
√

2(1 − cos ∆φ) sin(ωt + λ) (7c)

where: sin λ =
R(cos ∆φ−1)−r sin ∆φ

D
√

2(1−cos ∆φ)
, cos λ =

r(1−cos ∆φ)−R sin ∆φ

D
√

2(1−cos ∆φ)
Particular integrals of these equations, describing

the steady state, are of a form:

ξ(t) =
meω2

√
2(1 + cos ∆φ)

kξ − Mω2 sin (ωt + δ) (8a)

η(t) =
meω2

√
2(1 − cos ∆φ)

kη − Mω2 sin(ωt + κ) (8b)

α(t) =
meω2D

√
2(1 − cos ∆φ)

kyl2 − Jω2 sin(ωt + λ) (8c)

The analysed, up to the present, dynamic equations were
describing the body vibrations at the assumption that
the vibrators angular motion for the steady state can be
considered the uniform motion. Such assumption is tan-
tamount to omitting the body vibration influence on the
vibrators running. Presently the vibrators equations of

motion will be written with taking into account those
couplings, it means in the non-inertial system related
to the machine body executing the vibrating motion de-
scribed above.

When the moments from forces of the transportation
are applied to vibrators, their angular motion equations
are in a form:

Jzr φ̈1 = Ωz1 − meξ̈1 cos φ1 − meη̈1 sin φ1 (9a)

Jzr φ̈2 = Ωz2 − meξ̈2 cos φ2 + meη̈2 sin φ2 (9b)

where :
Ωz 1, 2 – external moments (difference between the

driving and anti-torque moments),
Jzr – moment of inertia of the vibrator together with

engine, calculated versus the axis of rotation.
Vibratory moments Ωwi, i-1,2 , are expressed as:

Ωw1 = −me(ξ̈1 cos φ1 + η̈1 sin φ1) (10a)

Ωw2 = −me(ξ̈2 cos φ2 − η̈2 sin φ2) (10b)

On the bases of the previously derived solutions of the
body motion (not taking into account influences of vi-
bratory moments on vibrators running) the acceleration
components of both vibrators axes will be determined.
The acceleration of axes of individual vibrators, after
taking into account the transportation and the relative
motion resulting from the local elasticity as well as after
omitting expressions of a lower order versus the remain-
ing ones, has in the absolute system ξη the following
components:

ξ̈1 ≈ ξ̈ − α̈ · r − meω4

kψ
cosψ · sin(ωt + ∆φ − ψ) (11a)

η̈1 ≈ η̈− α̈ ·R − meω4

kψ
sinψ ·sin(ωt +∆φ−ψ) (11b)

ξ̈2 ≈ ξ̈ + α̈ · r − meω4

kψ
cosψ · sin(ωt − ψ) (11c)

η̈2 ≈ η̈ − α̈R +
meω4

kψ
sinψ · sin(ωt − ψ) (11d)

After substituting in Eq. (11) the second derivatives of
Eq. (8) and introducing the obtained values into Eq. (10),
it is possible to calculate the vibratory moment:

Ωw1 = −√2m2e2ω4[

√
1 + cos ∆φ

Mω2 − kξ
sin(ωt + δ)· cos(ωt + ∆φ)−

rD
√

1 − cos ∆φ

Jω2 − kyl2
sin(ωt + λ) · cos(ωt + ∆φ)+

√
1 − cos ∆φ

Mω2 − kη
sin(ωt + κ) · sin(ωt + ∆φ)−

RD
√

1 − cos ∆φ

Jω2 − kyl2
sin(ωt + λ) · sin(ωt + ∆φ)]+
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m2e2ω4

kψ
[cosψ · sin(ωt + ∆φ − ψ) · cos(ωt + ∆φ)+

sinψ · sin(ωt + ∆φ − ψ) · sin(ωt + ∆φ)]
(12)

The averaged value of the vibratory moment Ωw1(t) for
the vibration period T=2π/ω equals :

Ω̃w1 =
−√2m2e2ω5

2π
[

√
1 + cos ∆φ

Mω2 − kξ

2π/ω∫
0

sin(ωt + δ)·
· cos(ωt + ∆φ)dt−

rD
√

1 − cos ∆φ

Jω2 − kyl2

2π/ω∫
0

sin(ωt + λ) · cos(ωt + ∆φ)dt+
√

1 − cos ∆φ

Mω2 − kη

2π/ω∫
0

sin(ωt + κ) · sin(ωt + ∆φ)dt−

RD
√

1 − cos ∆φ

Jω2 − kyl2

2π/ω∫
0

sin(ωt + λ) · sin(ωt + ∆φ)dt]+

m2e2ω4

kψ
· ω
2π

[cosψ·

·
2π/ω∫
0

sin(ωt + ∆φ − ψ) · cos(ωt + ∆φ)dt + sinψ·

·
2π∫
ω

sin(ωt + ∆φ − ψ) · sin(ωt + ∆φ)dt]

(13)

After calculating the integrals and using the depen-
dence (7) (determining the values of angles λ,κ,δ ), it
is possible to obtain, after rearrangements, the following
equation:

Ω̃w1 =
−m2e2ω4

2

[
D2

Jω2 − kyl2
+

1
Mω2 − kη

− 1
Mω2 − kξ

]
sin ∆φ

(14)

Performing the similar procedure versus the vibra-
tory moment of the second vibrator the following is ob-
tained:

Ω̃w2 =
m2e2ω4

2

[
D2

Jω2 − kyl2
+

1
Mω2 − kη

− 1
Mω2 − kξ

]
sin ∆φ

(15)

As can be seen, the form of equations (14) and (15)
is identical as in the case of the vibrators stiffly placed
[2,3]. The similar result can be obtained for vibrators

elastically placed in two mutually perpendicular direc-
tions.

This means, that an insufficient stiffness of indivi-
dual vibrators mounting does not influence the character
of their self-synchronisation.

3. The case of the combined placement of the
vibrators set on the supporting system of insufficient

stiffness in one or two directions

The case when the system of two stiffly connected
vibrators is elastically mounted in the direction ψ (Fig.1),
with the coefficient of elasticity kψ , is considered.

In this case the combined acceleration of vibrators
axes, originated from the transportation motion and lo-
cal deformations, obtains (after omitting components of
a lower order than the remaining ones) the following
form:

ξ̈1 ≈ ξ̈−α̈·r −meω4

kψ
cosψ·[sin(ωt+∆φ−ψ)+sin(ωt+ψ)]

(16a)

η̈1 ≈ η̈−α̈·R −meω4

kψ
sinψ·[sin(ωt+∆φ−ψ)+sin(ωt+ψ)]

(16b)

ξ̈2 ≈ ξ̈+α̈·r −meω4

kψ
cosψ·[sin(ωt+∆φ−ψ)+sin(ωt+ψ)]

(16c)

η̈2 ≈ η̈−α̈R −meω4

kψ
sinψ·[sin(ωt+∆φ−ψ)+sin(ωt+ψ)]

(16d)
Calculating, in a similar fashion as before, the current as
well as the averaged – for the vibration period – values
of vibratory moments applied to vibrators 1 and 2 it is
possible to obtain:

Ω̃w1 =
−m2e2ω4

2

[
D2

Jω2 − kyl2
+

1
Mω2 − kη

−
1

Mω2 − kξ

]
sin ∆φ − m2e2ω4

2kψ
· sin(∆φ − 2ψ)

(17)

Ω̃w2 =
m2e2ω4

2

[
D2

Jω2 − kyl2
+

1
Mω2 − kη

−
1

Mω2 − kξ

]
sin ∆φ +

m2e2ω4

2kψ
· sin(∆φ − 2ψ)

(18)

As it results from the form of equations (17) and (18),
a partially elastic placement of the vibrators set in the
direction ψ changes the conditions of vibrators synchro-
nisation. Thus, e.g. in case of a relatively soft placing
the second member of both dependencies can decide on
the synchronisation character imposing the condition of
the solution stability ∆ϕ =2ψ and e.g. for angle ψ = π/2
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can lead to the counter synchronisation ∆ϕ = π, causing
a stoppage of the machine working motion and initiating
its movement in the perpendicular direction.

The stationary motion form can be determined by
solving, on account of the phase angle ∆ϕ, equation:
Ω̃w2 − Ω̃w1 = 0, it means:

[
D2

Jω2 − kyl2
+

1
Mω2 − kη

− 1
Mω2 − kξ

]
sin ∆φ+

1
kψ
· sin(∆φ − 2ψ) = 0

(19)

When the vibrators set – apart from the elasticity of
mounting in the direction ψ – has the identical elasticity
in the direction ψ + π /2 equation (19) obtains the iden-
tical form as for the stiff mounting, which means that
the set is not sensitive to this type of elasticity.

4. Combined placement of the vibrators set
exhibiting the rotational elasticity

The case of the vibrators set placement which al-
lows for small angular movements around the mid-point
of a line segment joining vibrators axles, will be con-
sidered. The rotational elasticity occurring in this case,
understood as the ratio of the moment to the angle of
rotation, is denoted as ko[Nm]. If, as for systems of a lin-
ear elasticity, the high, in respect to working frequency,
tuning of the system: vibrators set - its supporting sys-
tem, is assumed, the components of the vibrators axes
acceleration (after taking into account the influence of
elastic rotations and omitting expressions of significantly
lower values than the remaining ones) can be written in
the following form:

ξ̈1 ≈ ξ̈ − α̈ · r +
meω4r2

ko
[sinωt − sin(ωt + ∆φ)] (20a)

η̈1 ≈ η̈ − α̈ · R (20b)

ξ̈2 ≈ ξ̈ + α̈ · r − meω4r2

ko
[sinωt − sin(ωt + ∆φ)] (20c)

η̈2 ≈ η̈ − α̈R (20d)

When the vibratory moment Ωw1 is calculated according
to (10a):

Ωw1 =−√2m2e2ω4[

√
1 + cos ∆φ

Mω2 − kξ
sin(ωt+δ) · cos(ωt+ ∆φ)−

rD
√

1 − cos ∆φ

Jω2 − kyl2
sin(ωt + λ) · cos(ωt + ∆φ)+

√
1 − cos ∆φ

Mω2 − kη
sin(ωt + κ) · sin(ωt + ∆φ)−

RD
√

1 − cos ∆φ

Jω2 − kyl2
sin(ωt + λ) · sin(ωt + ∆φ)]−

m2e2ω4r2

ko
[sinωt − sin(ωt + ∆φ)] cos(ωt + ∆φ) (21)

After averaging equation (21) for the period of vibra-
tions, the following is obtained:

Ω̃w1 =
−√2m2e2ω5

2π
[√

1 + cos ∆φ

Mω2 − kξ

2π/ω∫
0

sin(ωt + δ) · cos(ωt + ∆φ)dt−
rD

√
1 − cos ∆φ

Jω2 − kyl2

2π/ω∫
0

sin(ωt + λ) · cos(ωt + ∆φ)dt+
√

1 − cos ∆φ

Mω2 − kη

2π/ω∫
0

sin(ωt + κ) · sin(ωt + ∆φ)dt−

RD
√

1 − cos ∆φ

Jω2 − kyl2

2π/ω∫

0

sin(ωt + λ) · sin(ωt + ∆φ)dt]−

m2e2ω5r2

2πko
[

2π/ω∫
0

sinωt · cos(ωt + ∆φ)dt−
2π/ω∫
0

sin(ωt + ∆φ) · cos(ωt + ∆φ)dt]
(22)

Calculating integrals and substituting expressions (7) de-
termining phase angle values κ, λ, δ after rearrange-
ments, the following is finely obtained:

Ω̃w1 =
−m2e2ω4

2

[
D2

Jω2 − kyl2
+

1
Mω2 − kη

− 1
Mω2 − kξ

− r2

ko

]
sin ∆φ

(23)

In a similar fashion, it is possible to obtain for the second
vibrator:

Ω̃w2 = −Ω̃w1 (24)

An equation for the phase angle ∆ϕhas the form:

Ω̃w2 − Ω̃w1 = 0 (25a)

which is equivalent to:
[

D2

Jω2 − kyl2
+

1
Mω2 − kη

− 1
Mω2 − kξ

− r2

ko

]
sin ∆φ = 0

(25b)
Since the sign of the coefficient in square bracket in
(25b) decides on the synchronisation character [2], there-
fore, as it is seen from this dependence form, too small
rotational stiffness of the vibrators set placement ko can
lead to the reversal of sign of expression (25b) (which
should be positive for over-resonance machines) and to
the change of the stable value of the vibrators phase
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angle ∆ϕ from 0 (desired value) into ±π. This would
cause the vibrations decay in the working direction and
undesirable movement in the transverse direction.

So, condition for proper synchronisation has in this
case the form:

r2

ko
+

1
Mω2 − kξ

<
D2

Jω2 − kyl2
+

1
Mω2 − kη

(26)

5. Conclusions

The performed considerations enabled drawing
some conclusions.

1o Individual mounting elasticity of each vibrator
does not influence the way of their synchronisation.

2o Elasticity of the mounting the mutually stiff set of
vibrators to the machine body in one linear or rotational
direction can lead to a machine malfunction, which can
be resolved by analysing dependencies (19) and (26).

REFERENCES

[1] I.I. B l e c h m a n, Vibratory Mechanics. Nauka,
Moskwa 1994.

[2] J. M i c h a l c z y k, Stany nieustalone nadrezonan-
sowych maszyn wibracyjnych i ich wpływ na bez-
pieczeństwo pracy maszyn i urządzeń. Prace Komisji
Nauk Techn. PAU 4 (2010).

[3] J. M i c h a l c z y k, P. C z u b a k, Influence of Colli-
sions with a Material Feed on Cophasal Mutual Synchro-
nization of Driving Vibrators of Vibratory Machines.
Journal of Theoretical and Applied Mechanics 48, 1
(2010).

[4] J. M i c h a l c z y k, Angular oscillations of vibratory
machines of independent driving systems caused by a
non-central direction of the exciting force operations.
Archives of Mining Sciences 1 (2012).

[5] T. B a n a s z e w s k i, Przyczyny nieprawidłowej samo-
synchronizacji wibratorów w przesiewaczach. IX Sym-
pozjum Techniki Wibracyjnej i Wibroakustyki, Kraków
1990.

[6] Ch. H a y a s i, Nonlinear Oscillations in Physical Sys-
tems. McGrow-Hill,Inc. 1964.

Received: 20 March 2012.


