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SYNCHRONIZATION DISTURBANCES OF THE VIBRATORY CONVEYER CAUSED BY A NOT TOTAL SYMMETRY OF THE
DRIVING SYSTEM

ZABURZENIA SYNCHRONIZACJI WIBRATORÓW PRZENOŚNIKA WIBRACYJNEGO SPOWODOWANE NIEPEŁNĄ SYMETRIĄ
UKŁADU NAPĘDOWEGO

The analysis of synchronization disturbances of inertial vibrators driving the vibratory conveyer supported on a system
of leaf springs was performed in the paper. Especially an influence of diversification of driving and anti-torque moments on
the possibility of obtaining the vibrators synchronous running, its cophasing and the time history of the working motion of the
vibratory trough – was discussed.
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W pracy przeprowadzono analizę zaburzeń samosynchronizacji wibratorów inercyjnych napędzających przenośnik wi-
bracyjny podparty na układzie resorów płaskich. W szczególności rozważono wpływ zróżnicowania momentów napędowych i
oporowych na możliwość uzyskania biegu synchronicznego, jego współfazowość i przebieg ruchu roboczego rynny przenośnika.

Let us discuss the vibratory conveyer placed on a
system of parallel leaf springs exited for vibrations by
means of two counter-running inertial vibrators. In the
currently used devices, driving units are the most often
independent and their cophasal synchronization is ob-
tained on the basis of a self synchronization [1]. Since

such initial system does not allow for obtaining the need-
ed phase angles values[2], the additional elastic support
of the vibrator system is usually applied. It increases
the degrees of freedom number of the machine by a
transverse motion ‘z’ of the driving system – (Fig. 1)

Fig. 1. Computational model of the over-resonance vibratory conveyer; k, kz, c, cz− coefficients of elasticity and viscous damping respectively,
e- eccentric of unbalanced mass m, Jo – moment of inertia of vibrator, mk ,mw – mass of conveyor and vibrator body respectively
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A self-synchronization phenomenon occurs in such
system in a desired way generating the resulting force in
the direction of the working vibrations ‘x’, provided that
there is a total symmetry of the driving system and an
over-resonance tuning of vibrators system in the ‘z’ axis
direction.

However, in practice, a significant diversification of
the resistance of bearings or electromagnetic moments
of both driving systems occurs - due to operating or
assembling reasons.

The determination of the influence of this type of
deviation on the cophasal and synchronization abili-
ty of vibrators - and in consequence on the conveyer
working motion - is the purpose of the presented pa-
per.

Assuming that the system is not operating within the
parametric resonance range [4], the dynamic equations
of motion can be written as:

(mk + mw + 2m)ẍ + cẋ + kx = −me[ϕ̈1 cos(ϕ1)+
ϕ̈2 cos(ϕ2)] + me[ϕ̇2

1 sin(ϕ1) + ϕ̇2
2 sin(ϕ2)]

(1)

(mw + 2m)z̈ + czż + kzz = me[ϕ̈1 sin(ϕ1) − ϕ̈2 sin(ϕ2)]+
me[ϕ̇2

1 cos(ϕ1) − ϕ̇2
2 cos(ϕ2)]

(2)
Since the above given asymmetric problem can not

be solved by using the most often applied integral cri-
teria [3] the averaging method [1], with isolating the
fast and slow-variable effects , was used. This allows for
assuming the first approximation of velocities and angles
in the form:

ϕ̇1 � ϕ̇2 � ω = const, ϕ2 = ωt,
ϕ1 = ϕ2 + ∆ϕ, ∆ϕ = const

(3)

That time the steady state, at omitting a usually
negligible energy dissipation in the suspension system
(c=cz=0), is described by the equations of the first ap-
proximation:

(mk +mw+2m)ẍ+kx = meω2[sin(ωt+∆ϕ)+sin(ωt)] (4)

(mw + 2m)z̈ + kzz = meω2[cos(ωt + ∆ϕ) − cos(ωt)] (5)

These equations – after rearrangements – can be
presented in the following form:

(mk + mw + 2m)ẍ + kx = meω2
√

2[1 + cos(∆ϕ)]

· sin(ωt + δ), where tg(δ) =
sin(∆ϕ)

1 + cos(∆ϕ)
(6)

(mw + 2m)z̈ + kzz = −meω2
√

2[1 − cos(∆ϕ)]

· sin(ωt + γ), where tg(γ) =
1 − cos(∆ϕ)

sin(∆ϕ)
(7)

Second derivatives of the particular integrals of
these equations are of the form:

ẍ(t) = −meω4
√

2[1 + cos(∆ϕ)]
k − (mk + mw + 2m)ω2 sin(ωt + δ) (8)

z̈(t) =
meω4

√
2[1 − cos(∆ϕ)]

kz − (mw + 2m)ω2 sin(ωt + γ) (9)

Presently, we will write equations of motion of vi-
brators in the uninertial reference system, it means with
taking into account vibrations of their axes of rotation
resulting from motions along x and z axis.

Joϕ̈1 = Mz1 + mez̈ sin ϕ1 − meẍ cosϕ1 (10)

Joϕ̈2 = Mz2 − mez̈ sin ϕ2 − meẍ cosϕ2 (11)

where:
Jo – moment of inertia of the driving system counted

versus the vibrator axis of rotation,
Mzi – difference between the motor driving mo-

ment Mni and the vibrator resistance to motion moment
Moi, i = 1, 2.

Let us mark expressions describing in equations (10)
and (11) influences of the vibrator axes vibrations as vi-
bratory moments Mwi, i = 1, 2. The time histories of φ1,
φ2 angles are substituted according to the first approxi-
mation (3):

Mw1 = me[z̈ sin(ωt + ∆ϕ) − ẍ cos(ωt + ∆ϕ)] (12)

Mw2 = −me[z̈ sin(ωt) + ẍ cos(ωt)] (13)

Substituting – in these equations – values of accelera-
tions (8) and (9) determined according to the first ap-
proximation the following is obtained:

Mw1 = m2e2ω4[

√
2[1 − cos(∆ϕ)]

kz − (mw + 2m)ω2 sin(ωt + γ)

· sin(ωt + ∆ϕ) +

√
2[1 + cos(∆ϕ)]

k − (mk + mw + 2m)ω2 sin(ωt + δ)

· cos(ωt + ∆ϕ)]
(14)

Mw2 = −m2e2ω4[

√
2[1 − cos(∆ϕ)]

kz − (mw + 2m)ω2 sin(ωt + γ) · sin(ωt)−
√

2[1 + cos(∆ϕ)]
k − (mk + mw + 2m)ω2 sin(ωt + δ) · cos(ωt)]

(15)
The vibratory moment values, averaged for the period
T=2π/ω, are as follows:
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Mw1T =
1
T

T∫
0

Mw1(t)dt =
ω

2π

2π/ω∫
0

Mw1(t)dt =

=
m2e2ω5

2π
〈

√
2[1 − cos(∆ϕ)]

kz − (mw + 2m)ω2

2π/ω∫
0

sin(ωt + γ)·

sin(ωt + ∆ϕ)dt +

√
2[1 + cos(∆ϕ)]

k − (mk + mw + 2m)ω2 ·
2π/ω∫
0

sin(ωt + δ) · cos(ωt + ∆ϕ)dt〉

(16)

Mw2T =
1
T

T∫
0

Mw2(t)dt =
ω

2π

2π/ω∫
0

Mw2(t)dt =

= −m2e2ω5

2π
〈

√
2[1 − cos(∆ϕ)]

kz − (mw + 2m)ω2

2π/ω∫
0

sin(ωt + γ)·

sin(ωt)dt −
√

2[1 + cos(∆ϕ)]
k − (mk + mw + 2m)ω2 ·

2π/ω∫
0

sin(ωt + δ) · cos(ωt)dt〉

(17)

After the integration we obtain:

Mw1T =
1
2
m2e2ω4


√

2[1 − cos(∆ϕ)]
kz − (mw + 2m)ω2 cos(γ − ∆ϕ)+

√
2[1 + cos(∆ϕ)]

k − (mk + mw + 2m)ω2 sin(δ − ∆ϕ)


(18)

Mw2T = −1
2
m2e2ω4


√

2[1 − cos(∆ϕ)]
kz − (mw + 2m)ω2 cos(γ)−

√
2[1 + cos(∆ϕ)]

k − (mk + mw + 2m)ω2 sin(δ)


(19)

These dependencies were rearranged by using formulas
(6),(7) determining phase angles γ and δ, and finally the
following formula was obtained:

Mw1T =
K
2

sin(∆ϕ) (20)

Mw2T = −K
2

sin(∆ϕ) (21)

where:
K = m2e2ω4·[

1
kz − (mw + 2m)ω2 −

1
k − (mk + mw + 2m)ω2

]
(22)

Let us distinguish the driving part Meli and the anti-
torque part Moi, i=1,2 of the external moments Mzi
influencing vibrators and substitute the current values
of vibratory moments in equations (10) and (11) by
their period averaged values. These arrangements enable
writing the equations in the following form:

Joϕ̈1 � Mel1 − Mo1 + Mw1T (23)

Joϕ̈2 � Mel2 − Mo2 + Mw2T (24)

Additionally we assume, that the driving moment origi-
nates from the induction motor of a mechanical charac-
teristic described by the Kloss equation.

This equation can be presented in a linear form [5]
for the slip value appropriately smaller than the slip of
stall. It can be proved, that in the vicinity of the angular
velocity of the steady running ωust the following occurs
(in approximation):

Mel(ϕ̇) � Mel(ωust) − (ϕ̇ − ωust) · ael (25)

where: ael=2pMzn/(ωs – ωu),
p− motor over-load capacity,
Mzn− rated moment,
ωs− synchronous angular velocity,
ωu− stall angular velocity.
In a similar fashion it can be shown that the vibrator

resistance of bearing moment, assumed as proportional
to its excitation force in the vicinity of the steady running
velocity ωust , can be presented as:

Mo(ϕ̇) � Mo(ωust) + (ϕ̇ − ωust) · ao (26)

where: ao ≈ µmeωustd,
µ− equivalent coefficient of friction of rolling bear-

ings,
d− journal diameter,
– remaining markings are the same as before.
Substituting in equations (23) and (24) the derived

above dependencies for individual components of the
moment, we obtain the following:

Joϕ̈1 =
[
Mel(ωust) − (ϕ̇1 − ωust)ael

]−[
Mo(ωust) + (ϕ̇1 − ωust)ao

]
+ Mw1T

(27)

Joϕ̈2 =
[
Mel(ωust) − (ϕ̇2 − ωust)ael

]−[
Mo(ωust) + (ϕ̇2 − ωust)ao

]
+ Mw2T

(28)

After subtraction by members of equation:

Jo(ϕ̈1− ϕ̈2) = −(ϕ̇1− ϕ̇2)(ael +ao)+ (Mw1T −Mw2T ) (29)

and using the notation ∆φ = φ1 − φ2, it is possible to
present the final form:

Jo∆ϕ̈ + (ael + ao)∆ϕ̇ + Ksin(∆φ) = 0 (30)

This dependence constitutes the differential equa-
tion determining the time variability of disphas-
ing angle ∆φ which – due to initial conditions
or disturbances -occurred in the system of the
self-synchronization ability.
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Equation (30) can be investigated numerically,
which allows for the determination of the time history
∆φ(t) of the vibrator synchronization process. However,
we must notice that this equation form corresponds to the
equation of motion of the pendulum with viscous damp-
ing, which enables the clear qualitative analysis of the
effect. If, e.g. both vibrators - in not synchronized state
- are running at not much different angular velocities ω1
and ω2, then at every time period To= 2π /(ω1−ω2) their
angular positions are identical, i.e. ∆φ=0.

If this moment is assumed as the initial one in the
analysis of equation (30) then we can see that the con-
dition to establish synchronization is that the solution
satisfies the condition: ∆φ < π. Thus, this means that the
pendulum described by equation (30) will not perform
the revolution.

When damping is omitted (which improves the safe-
ty of calculations) the synchronization condition can be
obtained from equating the pendulum kinetic energy for
t=0 and the potential energy for t (∆φ = π). In such case
we have:

1
2
Jo∆ϕ̇

2
o =

π∫

0

K sin ∆ϕ · d(∆ϕ) (31)

From here, the condition to establish synchronization is:

∆ϕ̇o 6
√

4K
Jo

(32)

The positive damping occurring in actual conditions, de-
termined in equation (30) by the sum ael+ ao, causes that
for the arbitrary initial value ∆ϕ̇o, after a respectively
large number of pendulum revolutions the condition (32)
is satisfied, the vibrators establish synchronous motion,
and the phase angle ∆φ will lead to zero in a manner
analysed previously.

The case of not total symmetry of both driving
systems.

Such case can occur in practice due to differences
in workmanship, assembling and conservation of driving
motors or bearings of vibrators. That time, the natural ve-
locities (without taking into account vibratory moments)
of both driving systems are different: ωust1 , ωust2. Then
it occurs:

Meli(ωusti) − Moi(ωusti) = 0, i = 1, 2. (33)

Making use of equation (33) the system of equations
(27) and (28) can be brought to the differential equation
(34) determining the time history of phase angle ∆φ:

Jo∆ϕ̈ + (ael + ao)∆ϕ̇ + Ksin∆φ = (ωust1 − ωust2)(ael + ao)
(34)

A physical interpretation of this equation as the pen-
dulum equation leads to an important conclusion.

It is not possible to obtain the synchronous motion
when the following condition occurs:

|ωust1−ωust2| (ael+αo) > K (35)

When condition (35) does not occur, then the syn-
chronization depends on the initial conditions and can be
investigated by means of the analysis of equation (34).

Analysis of steady states.
Equation (34) supplies very essential dependencies

also within the range of the steady state work. Let us
assume ∆ϕ̈ = ∆ϕ̇ = 0 .

That time, we obtain the dependence determining the
vibrator disphasing angle ∆ϕ as a function of the system
asymmetry indicator:

sin(∆ϕ) =
(ωust1 − ωust2) · (ael + ao)

K
(36)

This equation can be also presented in an equivalent
form, which is more suitable when instead of data con-
cerning the steady state running of both motors we have
data related to the difference of their driving-anti-torque
moments in the point of the steady state work ωust:

sin(∆ϕ) =
Mz1(ωust) − Mz2(ωust)

K
(37)

When the vibrators disphasing angle ∆ϕ is deter-
mined from equations (36) and (37), it is possible
to determine (on the basis of the particular inte-
grals of equations (6) and (7)) amplitudes of steady
state vibrations of the conveyer Ax and vibrator Az –
under conditions of not total cophasing caused by the
asymmetry of the driving system:

Ax =
meω2

√
2[1 + cos(∆ϕ)]

k − (mk + mw + 2m)ω2 (38)

Az =
meω2

√
2[1 − cos(∆ϕ)]

kz − (mw + 2m)ω2 (39)

Conclusions

1. The performed analysis allowed for the derivation
of the differential equation describing the time history of
the vibrators synchronization process:
a) For the case of the total symmetry of the driving

system – (30),
b) For the case of the diversification of the driving and

anti-torque moments – (34).
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2. The analysis of solutions found in the case (b)
allowed for the formulation of condition (35) determin-
ing the system asymmetry upper limit, above which the
synchronization is not possible.

3. For the case of asymmetric system dependencies
(36) and (37) – determining the vibrators disphasing an-
gle, and dependencies (38) and (39) – determining the
vibration amplitudes of the body and vibrators system,
were given.

4. Analogical dependences for machines supported
on helical springs were derived in Ref.[6].
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