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ON NUMERICAL ANALYSIS OF THERMAL RADIATION IN PARTICIPATING AND SCATTERING MEDIUM IN

METALLURGICAL FURNACES

ANALIZA NUMERYCZNA RADIACYJNEJ WYMIANY CIEPEA W PIECACH METALURGICZNYCH W OBECNOSCI ZAWIESINY

PYLOW

There are numerous examples of metallurgical processes, when the technological process involves single or multiphase
reacting flow at high temperature. The influence of thermal radiation on physical and chemical processes must be accounted for
when reliable process modeling results are expected. Thermal radiation calculation can be cumbersome if inadequate numerical
method is applied. The paper presents the thermal radiation model for the mixed convection, conduction and radiation heat
transfer with participating media. The flux and discrete ordinates methods has been used for the solution of some example
problems. Finally, the model application in 3D flash smelting process simulation has been discussed, where multiphase reacting
flow is strongly influenced by the thermal radiation. The obtained results shows the dominant role of radiation scattering and
emission of solid/liquid particles in overall heat transfer in the flash smelter. It is strongly advised to close the heat transfer
problem by the auxiliary calculation of heat losses through the furnace walls, as it removes necessity to supply assumed
temperatures of the walls and stabilizes numerical computations. Simulation results were compared with available industrial
measurements.
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Wielofazowy przeptyw z reakcjami chemicznymi w wysokich temperaturach wystepuje w wielu procesach metalur-
gicznych. Wptyw promieniowania cieplnego na przebieg konwersji chemicznej i fizycznej musi byé uwzgledniony na tyle
precyzyjnie aby mozliwe bylo uzyskanie wartosciowych wynikéw symulacji takich proceséw. Obliczenia wymiany ciepla
przez promieniowanie moze by¢ bardzo pracochtonne o ile zostanie dobrana niewlasciwa metoda numeryczna. W artykule
przedstawiono model radiacyjnego transportu energii dla mieszanej konwekcyjno-dyfuzyjnej i promienistej wymiany ciepta w
osrodku rozpraszajaco-emitujgcym. Model oparto na réwnaniu transportu energii promienistej. Opisano zastosowanie metod
numerycznych strumieni i kierunkéw dyskretnych na paru prostych przykiadach. Przedstawiono takze implementacj¢ opisanych
metod do 3-wymiarowej symulacji procesu zawiesinowego wytopu miedzi. Otrzymane wyniki ujawniajg dominujaca rolg
zjawiska rozpraszania i emisji promieniowania przez czastki koncentratu w procesie wymiany ciepla w piecu zawiesinowym.
Zaleca si¢ domknigcie modelu transportu ciepta przez dodatkowe obliczenia strat ciepla przez $ciany pieca, dzigki czemu unika
si¢ konieczno$ci wprowadzania zatozonego rozkladu temperatury Scian pieca i réwnocze$nie stabilizuje obliczenia numeryczne.
Wyniki symulacji por6wnano z dostgpnymi wynikami pomiaréw przemystowych.

1. Introduction and scattering media and also explanation of typical phe-

nomena occurring in the furnaces. There are numerous

In the high temperature pyrometallurgical processes
the contribution of radiation mechanism of heat transfer
in total transportation of energy can exceed 90%. Exact
and inexpensive prediction of energy transfer by radia-
tion is one of the challenging task for the research and
development in metallurgical technology. Leading motif
of the paper is the simulation of radiation energy trans-
fer in the metallurgical furnaces with emitting-absorbing

*

examples of metallurgical processes, when the techno-
logical process involves single or multiphase reacting
flow at high temperatures. In this paper flash smelting
of sulfide copper ores process will be an explanatory
example. In flash smelting technology the fine-grained
dry copper concentrate oxygenation in co-current flow
with furnace blast is the essence of smelting process.
The concentrate burner system distributes solid parti-
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cles of the load in the reaction shaft of the furnace,
thus forming the suspension of solid concentrate parti-
cles in the oxygen rich blow. An additional oil burner
acts as candle to initiate and claim the ignition of par-
ticles. Nevertheless, most of the particles are subjected
to self-ignition in effect to high thermal radiation ex-
change. The particles entering the reaction shaft at low
temperature (far below ignition temperature) are inten-
sively heated to reach the desired ignition temperature.
This is possible by the radiation heat transfer only, be-
cause the particles are embedded in the blow gases, fed
at low temperature. Then, after ignition, burning parti-
cles fall down the reaction shaft, until they are settled
on the surface of the furnace bath or on the furnace
walls. During their short life in the reaction shaft (2 to 4
sec) they are subjected to chemical conversion (oxidation
of combustible species, decomposition of limestone and
hydrated compunds, also evaporation of hydrocarbons
and moisture water), heat transfer with ambient gases by
diffusion and convection, and heat transfer by radiation.
Since oxidation reactions are exothermic, the particles
acquire high temperature. The excess of particles energy
is emitted into the enclosure. The radiation heat transfer
can occur between particles, between particle and sur-
rounding emitting-absorbing gases, and between particle
and furnace walls or slag surface. This complex scheme
of radiation heat transfer is additionally complicated by
the accompanying convection and conductive heat trans-
fer.

The presented methods of radiation heat transfer
modeling can be applied to many processes involving
combustion of solid/liquid particles in the furnace inte-
rior.

2. Modeling of multiphase reacting flow

The flow of particles and droplets in fluids occurs
very often in industrial processes. The typical high tem-
perature multiphase flow applications are energy conver-
sion and metallurgical processes. For many years, the de-
sign of system with particle flows was based primarily on
empirical investigations. Increased computational capa-
bility has enabled the development of numerical models
that can be used to complement engineering system de-
sign. The numerical models of multiphase reacting flows
are usually based on fundamental principles of momen-
tum, mass and heat transfer. For explanatory purposes,
mathematical model of flash smelting process has been

Va(x) = V ((Qairr () + Qeonv(X) + Qraa(X)) = V(=KVT) + V(phv) + Vraa(X)

documented in details in [1]. A short summary of the
model is presented below. The flow of the particles and
furnace gases are modeled separately, both are strong-
ly coupled by the momentum, heat and mass transfer
phenomena between coexisting phases. The important
element of mentioned model is the sub-model of heat
transfer in the internal volume of the furnace. It assumes,
that the heat transfer in gaseous phase can be described
by the classical differential energy equation considering
all heat transfer mechanisms (convection, diffusion, ra-
diation). The gaseous phase, the products of combustion
and the chemical decomposition (water vapor, carbon
dioxide and sulphur dioxide), can absorb and emit ener-
gy. The solid/liquid particle phase energy balance also
includes all possible modes of energy transfer. These
two energy balances are interconnected by heat transfer
between phases and boundary conditions. In this paper
the radiation transfer problem is considered for the con-
tinuous medium composed of a dispersion of particles
in the furnace gases. This medium is characterized by
the set of common radiant properties, usually calculat-
ed using additivity assumption. Then, after the radiant
heat transfer model is solved, the resulting heat fluxes
are distributed between solid/liquid and gaseous phase
using redistribution criteria, based on the same rule. In
the absence of solid/liquid dispersed phase the present-
ed numerical techniques can be also applied directly for
radiation heat transfer, without additional redistribution
of energy fluxes between phases constituting furnace at-
mosphere.

3. The governing equation of radiative energy
transfer with participating media

Thermal radiation as one of the most difficult as-
pects of the energy transfer problem is usually uncoupled
from the other modes of energy transfer to make the heat
transfer computations easier. Let us consider the energy
equation in combined mode heat transfer process with a
participating medium for steady state conditions

Vq(x) + ¢,(x) =0 €))

where X is a vector of spatial coordinates, g, (X) — space
distribution of heat sources, Vq(x) — the divergence of
heat flux, which can be expressed in a form revealing
three modes of energy transfer (diffusion -diff, convec-
tion — conv and radiation-rad):
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where v — velocity vector of flowing media, 4 — specific
enthalpy of media, k — heat conduction coefficient, p —
density, 7 — temperature.

The terms representing diffusion and convection de-
pends on local parameters, but the term representing en-
ergy transfer by radiation is dependent on local and glob-
al distribution of variables defining heat transfer. Simply
speaking, the intensity of radiant heat transfer depends
not only on local parameters but mainly on spatial distri-
bution of parameters influencing radiation heat transfer
in the enclosure. This leads to integro-differential form
of energy transport equation, the most difficult equation
to be solved. Moreover, the complexity of the radiation
transport arises from the fact that the atmosphere of the
furnace participates in the radiation transport proportion-
ally to its local properties and global radiation field, and
emission, absorption and scattering phenomena must be

dl(r,s)
ds

The left hand side of Eq.(3) represents the spatial
changes of the radiant intensity I(r,s) at point r in the
direction of vector s inside solid angle @ around vector
s. The three terms on the right side describe the :
attenuation of the radiant intensity /(r,s) due to out
scattering and adsorption:

= —=k(r)I(r,s) + o,rly(r,s) +

—k(r)i(r,s)

augmentation of the radiant intensity /(r,s) due to
spontaneous emission:

oa(r)ly(r, s)

augmentation of radiant intensity /(r,s) due to in
scattering:

Z=(0) f (v, Tine)p(T, Tinc )d@ine
4n 4n

where: « is an extinction coefficient of media, o, is an
absorption coefficient of media, o is a scattering coeffi-
cient of media, @iy is an angle of incident radiation. The
radiation problem in an enclosure can be only solved,
when the spontaneous radiation intensities 7,(r) of all
enclosing walls are uniquely defined by wall emissivity
&(r) and its temperature T (r).

When the participating medium contains solid/liquid
particles the radiative intensity may be changed by ab-
sorption and scattering. Three physical phenomena make
contribution to scattering: diffraction, reflection and re-
fraction. How intensive is a single particle scattering
depends on the shape of particle, the material of the
particle, the relative size of the particle with respect to
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accounted for. In general, the radiation of matter depends
on the wavelength interval as well as on the direction
of emission or incidence. In engineering applications,
the great simplification of radiation mathematical de-
scription is achieved introducing the concept of gray
body/substance and the concept of diffusive nature of
reflection/emission. The gray surface/substance follows
the scaled down Planck blackbody radiation distribution
function [2], that simply imply that its directional spec-
tral emissivity is independent on radiation wavelength.
The surface/substance is said to be diffuse at a given
wavelength, if its directional, spectral emissivity is in-
dependent on the direction, and such an assumption is
valid along this paper. Thus, the radiant intensity I(r,s)
obeys the transport equation for steady-state conditions
in the form [2]:

os(r)
4

the radiation wavelength, and the distance from other
scattering particles, [2]. For the sake of simplicity, this
is common to limit an analysis to spherical particles.
The relative size of the particle, described by the size
parameter 6 = ndp/A is of great importance in calcula-
tion of its radiative properties. For the high temperature
pyrometallurgical processes the expected radiation wave-
lengths mostly contributing to thermal energy transfer lie
in the interval of 0.5 to 10 pm. This compared with typ-
ical size of particles (pulverized coal, metallurgical dust,
concentrate particles in flash smelting process) gives the
estimation of ¢ greater than 5. In this range of 6 the Mie
scattering theory should be used to evaluate efficiency
of scattering, but this would be difficult task due to lack
of exact optical properties of particles and cumbersome
calculations, [4].

For the gray particles with the value of § > 5 ap-
proximate relationships are suggested, [3]. Usually we
have to deal with large collection of particles, forming
a suspension. When the average distance between parti-
cles is sufficiently greater then radiation wavelength, the
scattering by one particle is not affected by the presence
of surrounding particles. This condition is usually satis-
fied in typical metallurgical processes, and the effect of
neighbor particles on scattering can be neglected. Thus
for the cloud of gray, diffusive and spherical particles
of the same diameter d;, the absorption (0aj) and scat-
tering (osj) coefficients of the particle cloud can be
approximated by

f I(r, @ine)P(@, Tinc )d@inc 3)
4n

4

) “4)

- 2
O = <&din,



786

b/
e = ZPdn) (5)

where: &, rho — gray body emissivity and reflectivity
coefficients respectively, n; — number of particles of uni-
form diameter dj in the unit volume of suspension. Since
the scattering phase function in a cloud of uniform par-
ticles is the same for each particle, it is also the same
for the particle cloud.

For clouds of particles of non-uniform size, is cus-
tomary to approximate absorption and scattering coef-
ficients as a sum of individual particles contribution.
So, if the cloud consist of N¢ size fractions of particles
(uniform diameter d;), with individual particle density
n;, the summation over all fractions yields

Nj
b/
Tap = ZSZd?nj (6)
J=1
b/ N
Tsep = ZP Z d’fnj (7N
J=1

The extinction coefficient of the cloud p is then expressed
by

Kp =0Oap+ Cscp ®)

The scattering phase function ®(@, @inc) describe
how radiant energy is scattered by a participating medi-
um. Scattering can be classified into two categories:
isotropic and anisotropic. Isotropic scattering scatters en-
ergy equally into all directions. Anisotropic scattering
can be further divided into backward and forward scat-
tering. Backward scattering scatters more energy into
the backward direction, while forward scattering scat-
ters more energy into the forward directions. Scattering
function must satisfy the following relation:

f (T, Tinc)dBine = 47
4an

Classical phase function capable to represent all scatter-
ing modes can be expressed as a function of an angle
between incident and scattered radiation in the form, [4]:

D(p) = 1 + acos(p) 9

div (qraa(r)) = T (r)[47l(r) — G(r)]

where the integral term expresses the adsorption of the
incident radiation from all directions.

The solution of the radiant heat transfer requires ade-
quate boundary conditions. The radiant intensity leaving

I

4oy (r)lp(r) — o, (T) f I(r, Tinc)dDinc
4ar

where parameter a can be chosen from the interval
[-1,1], Fig.1. When a=0 function (9) describes isotropic
scattering, anisotropic backward scattering when a<0,
anisotropic forward scattering when a>0. For the spher-
ical, opaque and diffusive scattering solid particles other
form of scattering phase function is recommended, [3]:

Dy = (8/3m)(sin(p) — ¢cos(y)) (10

D(p)=1-1 0coS(ip)
Wgp)=1-0 Scos(p)

o=

Dig)=1+1 0C0S(1p)
W(p)=(BRR)(SiMep}-ocoS(p)]

Fig. 1. Scattering phase function in polar coordinates

For non-uniform particles the scattering phase func-
tion is not the same for all particles. It was observed,
that for the clouds of varying size particles, the phase
function becomes very smooth with a strong peek of
forward scattering remaining,[2]. Therefore, for whole
interval of particle diameter distribution, it is reasonable
to use uniform smooth phase function.

The following useful in radiation energy transfer
quantities can also be defined [5]:

— the incident radiation G(r) at point r, where @, is

a solid angle around direction s

G(r) = f I(r, Winc)ADinc 11)
4an

— the radiant heat flux E,q; in direction i, where @y is
a solid angle around direction s of incident radiation

Erad,i(r) = f I(r, winc)(Si)dwinc (12)
2

The divergence of the radiant energy flux, is then related

to the intensity of the radiation /(r,s) at the point given
by the position-vector r by the formula

(13)

an opaque diffuse surface contains emitted and reflected
energy, what can be expressed by



p(r)

I(r,s) = e(r)Iy(r) + — I(r,@n.) | BS" | dwip,

n.s'<0
(14)
where £ — wall emissivity, p — wall reflectivity, s’ ~ direc-
tion of incident radiation, @;,. — the solid angle around
direction s’, n — normal to wall vector, s n < 0 — denotes
summation over all direction s’ in the hemisphere convex
into direction of n.

4. Numerical solution of radiant energy transport

A very important aspect of the modeling of high
temperature processes is to solve the radiation transfer
problem accurately and efficiently, because of the dom-
inant role of this mode of energy transfer. Any of the

. o w9 [0y
Pl Plgy hPwas 5l

Transport of mass, momentum and energy is usual-
ly described by the partial differential equations which
can be considered as special cases of general transport
equation. In the absence of diffusion ( I' = 0 ) and for
constant values of pu = ¢y, pv = ¢,, p = ¢, the Eq. (15)
takes the form:

o oy

C—+oy—+C— =51+ S

X % y ay z dz ( 1 2¢)
The radiation transport equation (3) written for a rect-
angular three-dimensional enclosure containing a gray,
absorbing, emitting, and scattering medium takes similar
form:

(16)

PG e [\ o N ) k@I, ) (17)
ox dy 0z

if the source term S; consists of a sum of spontaneous
irradiation and scattering terms

ag
4

S3(r, @) = oo (r)p(r)+

(18)
The constants /=cosa, m=cosf, k=cosy appearing in (17)
are the direction cosines of vector s, where a, 8, gamma
are angle values between vector s and axis unit vectors
of coordinate system.

The similarity between general transport equation
and radiation transport equation (16) is obvious. It
makes possible standardization of numerical solution
techniques for all transport equations in the computer
flow dynamics (CFD) software.

+ 4 (F%)+

r
s(r) f I(r, Tine )Y (@, Tinc )d@inc
T an
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numerous solution techniques for the emitting, absorb-
ing and scattering media can be exploited. Hottel’s zone
method [6] is the classic one, provides a complete solu-
tion for the gray media, but is computationally intensive
and expensive. The Monte Carlo ray tracing method [4]
offers great versatility and accuracy, at a price of expen-
sive computations. The flux method, the finite volume
and the discrete ordinates method has gained popularity
due to relative simplicity and its consistency with space
discretization used for the numerical solution of trans-
port equations. The concept of finite volume method and
discrete ordinates method for radiation heat transfer is
based on the similarity of radiant heat transfer equation
and the following form of general transport equation for
dependent variable ¥(x,y,z) (steady state assumed for
simplicity):

o}
dy| 0z

Since the radiant intensity /(r,s) is a continuous
function of direction angle and spatial coordinates, nu-
merical solution of radiant energy transport equation
(3) requires discretization in both the angular and spa-
tial domains. The numerical methods for solving ra-
diation transport equation differ in the angular dis-
cretization schemes. The flux method, first proposed for
1-dimensional radiative transfer, then extended by Chu
and Churchill [7] for 3-dimensional problems, assumes
that the radiation is allowed to travel in all directions
within each solid angle. When several control angles are
introduced in each coordinate directions, the flux method
switches to control volume method. Better approxima-
tion to radiation transfer in the case of anisotropic scat-
tering problems can be attained by the discrete ordinate
method, where the actual radiation field is divided into a
finite number of discrete directions. For schematic com-
parison of discretization of radiant intensity distribution
among mentioned numerical methods see Fig.2.

(F%) + (51 + S2) (15)
0z

dy

a) b) a)

Fig. 2. Radiant intensity distribution and discretization: (a) actual in-
tensity distribution, (b} flux method discretization, (c) finite volume
discretization, (d) discrete ordinate method discretization

The flux method
Let us assume that for simplicity the scattering in
2-dimensions is approximated by the formula
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f I(r, Tine)V(@, Tine )d@ine = ([ (0)f + L. (R)b)
4ar

(19)
where f and b are the fractions of energy scattered in
forward and backward directions, /,.(r) and /_(r) are in-

1dE.@ _
2 dx

= =k(r)E_(r) + %a(l‘)Eb(l‘f) +0s(fE.(r) + bE_(r))

where E, — black body emission from isothermal unit
volume of media, (E, = 4nl), E. — radiative flux in pos-
itive coordinate direction, E_ — radiative flux in negative
coordinate direction.

ﬁ.

5:.

X = X X
II

a
Q.
~

x|
]

o
o

R p—
ﬁ.&
e s

where: E,., E,_, Ey,, Ey_, E,., E,_, are radiative heat
fluxes in both directions of Cartesian coordinate system,
Q = oy (o, + 0y) — is an albedo factor of the medium,
kK = 0, + 05 — is a total absorption and out-scattering
coefficient of the medium (extinction coefficient). The
dependence of all variables in (21) on position vector r
has been omitted for the notation purpose. The f, b, s fac-
tors of 6-flux method [7], describing scattered fractions
of radiant energy in all direction (forward, backward,
sideward), can be easily obtained by integration of scat-
tering phase function ¥(w, @is:) over incident radiation
angle @;,.. For example, when scattering function is de-
fined by (9) with a = 1 (dominant backscatter) , 6-flux
approximation coefficients attain values: f = 0.042, b =
0.292, s = 0.167, but for function (10) different values
are obtained: f = 0.021, b = 0.354, 5 = 0.156. Isotropic
scattering is then described by the set: f =1/6, b =1/6, s
=1/6.

The differential equations can be solved using any
convenient method. In the spatial domain equations are
discretized into finite number of control volumes. Dis-
cretization of Eq.(21) must be applied for each control
volume, thus delivering the set of difference equations,
and after that any of algebraic equation solver can be
used. But, to simplify the solution procedure, the fol-
lowing reconstruction of the problem has been proposed

= —k()E.(r) + 5 a(l‘)Eb(l‘f) +0s (fEL(r) + bE_(r)) —

tensities traveling in positive and negative directions re-
spectively. When isotropic scattering occurs f = b =1/2.

Integration of radiant transport equation (3) over the
positive and negative coordinate hemisphere (solid angle
2r) leads to the set of differential equations for unknown
radiative heat fluxes E (defined by (12))[6,9]:

1dE_ (r)
2 dx

(20

When the 3-dimensional enclosure is under consid-
eration, similar procedure leads to the following set of
differential equations:

~(1 = Qf)Eyy + QbE,_ + QS(Eyy + Eyy + Eps + Ez) + :(1 - Q)E,
~(1 - Qf)E,_ + QbE,, + Qs(Ey, + Eyr + Ey + E;) + (1 — Q)E,
= (1 = Qf)Ey + QbE,_ + Qs(Exs + Ex + Epy + Ez) + 6(1 - Q)E,
~(1 = Qf)E,_r + QbE,, + Qs(Eys + Exy + Epy + E;) + ¢(1 - Q)Ep
= —(1 -Qf)E,, +QbE, +Qs(E,, + E;x +Eyr + Eyy) + ;(1 - Q)E,
= —(1 - Qf)E,_ + QbE,, + Qs(Exs + Exy + Eyy + Eyy) + (1 - Q)E,

2D

[8]. An introduction of net radiative energy fluxes along
coordinate system axes:

Oy =Ex - E,, Qy = E_v+

-Ey,Q,=E; -E_ (22)

and summing up in pairs Eqn’s (21), one can obtain the
reduced system:

L(dQy/dx) = CF, + W(F, + F;) + HE,
1dQ,/dy) = CFy + W(Fx + F;) + HEy(23)  (23)

YdQ,/dz) = CF, + W(F, + F,) + HEy
where: C = =(1 - wf - wb); D =(1 - wf + wbh),

W = 2ws; H = £(1 - @). Introducing radiative energy
fluxes defined by:

Fy=Ew +Ey, Fy=Ey, +E,_, F, = E;, + E,_ (24)

and now subtracting in pairs Eqn’s (21) yields:

—(de/dx) =-DQ;, —(dF yldy)==DQy, —(dF 1d2)=-DQ,

(25)
Combining Eqn’s (23) and (25), leads to the set of sec-
ond order differential equations set:



—%(Ldi(F )) = CF, + W(F, + F,) + HEg
~4 (5 £(F))) = CF, + W(F, + F,) + HE(26)
.(-D‘—di 2) = CF, + W(F, + F,) + HEp

(26)
with unknown spatial distribution of radiative energy
fluxes Fy, Fy, F, .

The boundary conditions for Eqn’s (26) can be derived
from radiant energy balance at the solid surface (14) in
the form ( only x, direction is displayed as an example):

E., = gep(T) +pSE; = g;ep(T) + (1 = £)E,-  (27)

where: g; — emissivity of the gray surface, ps — reflectivi-
ty of the gray surface, (transmissivity has been assumed
to be zero), e, — hemispherical total emission of the
black surface at absolute temperature 7. Introduction of
new variables (22) and (24) into (27) gives the form of
boundary condition, to be used in connection with (26):

1 1

E(Fx + Q) = &5+ (1 - ss)'z‘(Fx ) (28)
The additional boundary conditions can be imposed

on the symmetry plane of the problem under considera-

tion:

dF,

dn
where: n is equal to x or y or z, depending of the position
of symmetry plane.

The discrete formulation of the problem, i.e. Eqn’s
(26), together with boundary conditions of type (28) and
(29), is a typical boundary value problem of the second
order differential equations. It can be solved easily using
any of the numerical method, once the temperature and
radiation properties distributions of participating media
are known in the system under consideration. For the
central difference scheme on rectangular grid it forms
the 3-three-diagonal system of algebraic equations, cou-
pled by the source terms (right and sides of the Eqn’s
(26) ). Therefore, iterative solution technique is recom-
mended, starting from guessed distribution of unknown
fluxes F, or, when the radiation transport problem is a
part of overall energy conservation problem, the restart
of radiation transport calculations can be initialized from
the previously obtained distribution of F and T.

The final objective of the radiation energy transfer
problem is the evaluation of the radiant energy flux diver-
gence distribution in space. The solution of the boundary
value problem (26) and (28) and (29) can be directly
utilized for this purpose, since

=0 29
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div(Qred) = =0o(Fy + Fy + F; — 4rnlg

according to (13) and approximation used:

(30)

0, f I(r, Winc)d@ine = 04 (Fx + F_v +F,) (€1))
4n

The discrete ordinates method

The flux method could not accurately model
anisotropic scattering with its solid angle discretization
practice. The discrete ordinates method, originated from
the same idea, offers greater flexibility in fitting appro-
priate discretization to the resolved problem, to achieve
required accuracy. In the discrete ordinates approxima-
tion the integrals appearing in the source term S3, Eq.
(18) , are approximated as weighted sums of the set of
M incident discrete intensities

M
f 1(x,9,2, @in ) V(@ Binc)d@ine = Z Am,-,wlm,-,,cq"m,m,-,w
4 Mine=1
(32)
scattered in the direction of w( intensity /,;). An index
miyc is associated with incident direction of radiation (
Wine ).

Using appropriate numerical integration scheme,
namely Gauss formula [9] or other proposed in [5,10,11],
one can obtain weighting factors A, associated with the
direction m;,.. Number of chosen directions M dictates
the number of differential radiation transport equation
to be solved simultaneously to obtain closed system of
equations uniquely defining the set of discrete intensi-
ties Iy. Thus, equation (3) is approximated by a set of
M equations:

aIm(-x y.2) alm(x Y:2)

+ My, + Ny = (33)

—klm(x,y,2) + T 1p(T) + ’:: Znsj AjIj(xW’ YwsZw) | ns; |
(33)
where: m=1,2,...,M, and L,, m,, n, — m direction
cosines in rectangular coordinates. Boundary conditions
in the form of Eq. (14) can be analogously discretized in
a solid angle space to close radiation transport problem:

Olw(x.y.2)
I ox

In(xw, yw < 20) = 8w1b(Tw)+p7w Z Ajlj(-xw, Yws 20 | ns; |
ns;

(34)
where: m — the direction index for the radiation beam
emanating from the wall (i.e. n s; > 0), while summa-
tion is carried out over radiation beams striking the wall
(ie. ns;<0).

This is interesting to note, that as Eq. (33) form the
set of first order differential equations. It requires only
one boundary condition per unknown intensity /,,. The
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boundary conditions (34) are defined for the intensities
emanating from the wall, what is sufficient condition to
make the solution of the problem unique.

If the scattering of the medium is present, the equa-
tions are coupled through the scattering term and should
be solved using iterative procedure. The same situation
takes place, when the temperature distribution is un-
known.

The choice of numerical integration scheme (32) of
scattering energy term is arbitrary. But, the observed un-
certainty of some numerical quadratures, imposes addi-
tional restrictions on directions and quadrature weights.
Interested reader is directed to study some research pa-
pers on this topic , i.e. [2,10,11]. One general rule has to
be fulfilled. As a reminiscence of two flux method, each

L.AyAz(If ,, — IF ) + mpAxAz(I} ,, - {’,’;,y_) +npAYAX(IE,, 15, ) =
—«P AxAYAZIE + o B AxAyAzl (TP + 5= AxAyAz Yo

where: m=1,2,... M, 15 I Ib AP IE L IE
— intensity I,, values at the control element surfaces,
If, — nodal value of I, at central point of the control
element. The surface values of radiant intensities at the
control element surfaces can be evaluated on the linearity

assumption of the inter-element intensity distribution

| | 1
Irlr: o _2' (lrl;,x+ + Irlr:.x—) =y 5 (Irl;.y+1rft.y—) 5 '2' (lrfl,u + Ig,z—)
(36)
In general, the equations are strongly coupled, and
the boundary conditions contain the unknown intensity
values, therefore it is necessary to solve the system iter-
atively, starting from guessed intensity distribution. The
equations (35) and (34) can be solved easily using ex-
plicit evaluation of /7, if solved in correct sequence (i.e.
starting from alternating corners of the domain, always
marching in downstream beam direction). During itera-
tive solution some predicted finite element face intensi-
ties could become negative. This is due to extrapolation
using Eq. (36). Setting negative values to zero, and con-
tinuing computation is generally accepted, but this may
lead to oscillations and instability. The negative values
can be avoided imposing upper bound on finite volume
dimensions Ax, Ay, Az as proposed in [13]. After the
distribution of al grid nodal intensities /,, are known,
the procedure is repeated, until convergence criteria are
satisfied.
Approximation errors
The outlined methods can be used to solve
steady-state radiation transfer problems that can be de-
scribed in Cartesian coordinates. Irregular geometries
can be handled using staircase-like boundary approx-

radiation beam passing in one direction (ordinate) must
be accompanied by the second passing in the opposite
direction. Therefore, the ordinates appear in pairs and
so M must be an even number. It become customary
to designate the quadrature approximation degree by S,
where the number of ordinates M = n(n + 2). For $,
approximation 24 ordinates are in use (3 per octant of
the sphere), but for S¢ number of ordinates amounts to
48 (6 per octant). Then, each equation for the intensity in
direction m, is discretized in usual manner on the finite
difference grid to obtain algebraic equation set for the
distribution of discrete intensity I, over the grid nodes.
For the rectangular grid, integration of Eq. (17) over the
volume of grid element AxAyAz, yields the following
difference equation for the distribution of intensity /,,:

(35)
1 Am, Irlp:n ‘me.m

mr=
imation or spatial-multi-block division of the domain.
This class of the numerical solution procedures can be
effectively used in many practical problems, however,
similar to other numerical methods, they are exposed
to discretization errors. The numerical discretization of
angular space is inherently biased by the ray effect [5].
The ray effect arises from approximating the continuous-
ly varying angular nature of radiation with a discrete set
of angular directions, and is independent of spatial dif-
ferencing scheme. The spatial differencing practice can
produce false numerical scattering. In computer fluid dy-
namics this phenomenon, called numerical diffusion, is
often encountered. Numerical scattering results in de-
formation of predicted intensity profile and in excessive
smoothing of radiation field. It can be reduced by ap-
plying finer spatial grid. This must be accompanied by
the finer discretization of angular space (more discrete
ordinates) to avoid errors produced by the ray effect [5].
Integration with combined mode heat transfer
Outer iterations are needed for the solution of cou-
pled diffusion, convection and radiation heat transfer
problem for any of the numerical method used for ra-
diation transfer problem. Thus, the single outer itera-
tion step composes of the solution of energy balance
equation (1) and the solution of radiation transfer equa-
tion (3). The equations are two-way coupled through
divergence of radiation flux (13) and temperature dis-
tribution in space. Special attention should be devoted
to the accurate formulation of the boundary condition
for energy transfer, as a radiation transfer is highly de-
pendent on temperature distribution. In this study, there
was assumed that, the combined heat transfer problem
involves the energy transfer to the wall by means of:



radiation, diffusion and convection, and through settling
of the solid/liquid particles of different temperature on
the wall surface. This combined energy transfer, in con-
junction with rectangular structured grid, when curved
walls are approximated by staircase-like geometries, can
produce locally discontinuous distribution of the wall
temperatures, disturbing smooth convergence of iterative
solution procedure. Auxiliary heat transfer model (diffu-
sion heat transfer) in the furnace walls should serve as
a simple remedy for this problem. When the intensive
cooling is imposed on the outer surfaces of the furnace
walls (for example water spraying system is used on the
external surfaces of the flash smelter reaction shaft), the
necessary smoothing of wall temperature distribution is
obtained.

5. Simulation results

Both, the 6-flux model and the discrete ordinates
model of radiant energy transfer has been implemented
in the software package for the simulation of metallur-
gical processes. The set of procedures for calculation of
the distribution of energy sources due to radiation heat
transfer in the participating media serves as an indepen-
dent sub model of the furnace mathematical model. Prior
to the final consolidation of radiation heat transfer mod-
el with the CFD code, the necessary testing calculations
has been performed. Usually, this is made for selected
benchmark problems, having known reliable solutions
as a reference. The numerical procedures were prepared
for 3D calculations. Therefore, when tested cases were
defined for simplified geometries (1D or 2D), simulation
has been carried out for appropriate 3D enclosure, pre-
serving sufficiently large dimension of analyzed domain
in the directions perpendicular to planes in original test
cases. As a first test problem (test case Nol), let us con-
sider the two infinite, parallel walls, spaced a distance
L and maintained at temperatures T¢=900 K and Ty =
300 K. The temperature distribution in absorbing and
emitting medium is set to be linear with the distance x
from the wall

T(x) = 700 - 300(x/L) for xe€(0,L)

The discontinuity of temperature distribution at the
walls is reasonable only when the heat transfer by con-
duction or convection is neglected [2], how it was as-
sumed in the test case. The task is to calculate the net
radiative flux density distribution in the space between
walls, if the medium is assumed to be gray with absorp-
tion coefficient k =0.15 [1/m]. The reference solution has
been obtained using 2-flux method for 10 space zones
[4]. The comparison of the results are shown in Fig.3.
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Fig. 3. The net radiative heat flux profiles for: (a) black gray surfaces,
(b) black surfaces

In the next test case (No.2), the distribution of heat
flux on the surface of the rectangular enclosure is to be
calculated. The flat enclosure is build up from ideal black
surfaces kept at constant temperature T = 0. Two partic-
ular variants are assumed: an absorbing-emitting media
at constant temperature 7,=500 K, (case No.2a) and the
same media with an unknown temperature (one wall has
constant nonzero temperature S00°C, case No.2b). In the
second variant temperature can be obtained from the
balance of radiant energy based on the hypothesis of ra-
diation equilibrium [2]. Different absorption coefficient
has been used in computation and results are shown in
Fig.4.
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Fig. 4. Distribution of normalized wall heat flux: (a) normalized by
medium temperature, (b) normalized by wall temperature (hot wall).
Solid lines — numerical solution using discrete ordinates method S4,
circles — reference solution [11]

Test case No 3 — the ideal furnace, [12]. The ge-
ometry of the furnace is simplified to the rectangular
prism (2times2x4 m) with gray and diffuse walls. All the
walls, except those perpendicular to long furnace axis z,
have equal temperatures and emissitivities (T = 900K,
& = 0.7). The wall at z=4 characterizes 7=1200 K,
€=0.85, and the wall at z=0 has T=400, £=0.70. The
furnace is filled with absorbing and emitting media (ab-
sorption coefficient k=0.5 m~!). In the furnace interior
the uniform heat source distribution is assumed, ¢, = 5
kW-m~>. The distribution of heat fluxes at the mid-height
of the hot and cold wall are compared with reference
solutions [14,15], Fig.5a. The temperature distribution,
calculated using hypothesis of radiation equilibrium is
shown in Fig. 5b .

Inspection of presented solutions of test cases au-
thorize us to assume that the prepared sub-model of ra-
diation transfer is a reliable tool for simulation radiation
heat transfer with participating media. The calculations
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are very efficient comparing to other numerical methods
of the same level of accuracy.
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Fig. 5. The solution of test case 3. (a) heat fluxes on the walls, where:
solid lines — discrete ordinate solution, circles — reference solutions
[14,15], (b) temperature distribution of media (20° volume grid, 48
ordinates)

6. Multiphase flow with radiation — flash smelting
example

The short description of the flash smelting process
has been delivered in the paper introduction. The furnace
consist of cylindrical reaction shaft (7m diameter, 7m
height), the parallelepiped settler for the smelted prod-
ucts and the cylindrical gas uptake shaft. Four concen-
trate burners are mounted symmetrically at the roof of
reaction shaft, accompanied by 5 oil burners. Centrally
mounted oil burner acts as candle to claim the particles
ignition, others are periodically active to complete en-
ergy balance. Today flash furnaces incorporate massive
cooling in the reaction shaft and the slag line of the
settler. Cooling elements are also used in the vicinity
of burners and trapping runners entrance, even in some
fragments of gas uptake shaft. Good knowledge of the
distribution of heat generation intensity and heat transfer
mechanism, the fluid dynamics of the particle suspen-
sion, physical and chemical properties of lining materi-
als is essential in designing the furnace cooling system.
The flow of solid/liquid particles through the confined
inner furnace space is accompanied by the particles col-
lision with the furnace walls. Depending on local flow
and thermal conditions in the vicinity of the wall sur-
face and wall temperature itself, the accretion formation
or wall surface corrosion can occur. In the first case,
formation of infusible accretions on cold walls restrains
the suspension flow and heat removal from the furnace;
both phenomena contribute to shortening of the furnace
production campaign.

The presented results of simulation of radiation heat
transfer in the flash smelter are based on the set of data,
delivered by complete model of single-stage flash smelt-
ing process [1]. These are spatial distributions of: the
particles number density (concentration) for all analyzed
size fractions Fig.6, the spatial concentration of gaseous

constituents Fig.7, gas temperature Fig.8a, particles tem-
peratures and mass flux of product settled on or crossing
the furnace model domain boundaries Fig.9.

Fig. 6. Particles number concentrations. (a) iso-surface of 3x10°
{m], d=50 pum (b) iso-surface 6x10° [m~3], d=20 um

Fig. 8. Temperature distribution [K] (b) Particies cloud absorption
coeflicient [1/m]

Fig. 9. Particles deposition rate, [kg-s~'m™2], reaction shaft side wall
-left, slag surface — center, reaction shaft back wall — right

The radiant properties of particles cloud has been
calculated using approximate formulas (6) and (7). The
distribution of particle cloud absorption coefficient is
presented in Fig.8b. The absorption coefficient of fur-
nace gas can be related to the gas emissivity through the
formula



Oagas = — (In(l - 8gax))/Lgas

where: emissivity coefficient has been evaluated as
a function of partial pressures of active (absorb-
ing/emitting) gas components (SO,,CO,,H,O) using
Leckner formula [16], Lg, is the mean radiation beam
penetration distance based on geometry of the enclosure.
The absorption coefficient of gas is less of one order of
magnitude in comparison to the absorption coefficient
for the particle cloud.

When the energy transfer in the gas phase and solid
phase are separately resolved, there is necessary to de-
fine the rule of redistribution of radiant energy transfer
between two coexistent phases. With the lack of pre-
cise knowledge, the simple additive rule can be applied.
Thus, if the total absorption coefficient of the suspension
is a sum of absorption coefficients of the gas phase and
particle phase

Og = 0qp + Oggas

the radiant energy transfer distributes between phases
proportionally to the ratios of the phase absorption co-
efficients related to the total absorption coefficient of the
suspension. It means that only the fraction o, gy5/0, Of
divergence of total radiation flux (13) must be inserted
into energy equation for gas phase as a source term.
The rest is used in the energy equation of solid/liquid
dispersed phase.

The combustion of oil from auxiliary burners has
been modeled using uniform oil droplets dimension and
standard Lagrange equation of motion, accompanied by
the combustion kinetic model based on hydrocarbons
evaporation rate and oxygen diffusion rate to the com-
bustion reaction front [17].

The emission and absorption of radiant heat flux of
particles are presented in Fig.10. This is interesting to
observe that the particles entering the furnace volume
are intensively heated by radiation, then after ignition,
give back energy to the enclosure. In the core of con-
centrate burner flames, where intensity of combustion is
restricted by oxygen concentration in furnace gases, the
particles are absorbing energy by radiation along their
way up to the slag surface.

Fig. 10. Radiation flux divergence of particles, [W/m?]: (a) concen-
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trate burner axis cross-section, (b) oil burner and recycled dust inlet
cross-section

The energy transfer equation in the gas phase is cou-
pled with the model describing heat transfer processes
inside the furnace walls to attain more reliable wall sur-
face temperature distribution taking also into account
leveling of walls temperature induced by furnace cool-
ing system. This extension of the model domain is nec-
essary, when the simulations is to be used for the design
of complex cooling system ( location of caissons, water
sprinkle system). The resulting from calculations wall
temperature distribution is shown in Fig.11a., where for
comparison, the measured external surface wall tempera-
tures are presented in Fig.11b. The steel shell of the shaft
is cooled by the flowing-off water film. The measure-
ments were conducted using special sensors (Kemtherm
HFM®) appropriate for these conditions. The distribu-
tion of measured isotherms is much alike as the layout of
calculated one. The predicted heat flux to surroundings
on the reaction shaft furnace in the range of [25+75
kW-m~2] agree well with industrial measurements data
showing the horizontal like contour line distribution in
the range of [15+65 kW-m™2].

Fig. 11. Temperature distribution on the surface of the reaction shaft
walls: (a) predicted on the internal surfaces, [K] (b) measured on the
external steel shell surface, [C]

The discrepancies observed in the values of heat
flux at the bottom of the shaft are due to the action of
caissons mounted in the base of shaft walls. The indus-
trial measurements has been conducted on the external
steel shell, thus the measurement results in the vicinity
of caissons are less then those predicted on the inter-
nal surface. It is interesting to observe, that the maximal
predicted temperatures of the internal surfaces of the fur-
nace enclosure are located in regions where the dense hot
particles cloud is flowing very close to the wall ( back
wall of the settler and reaction shaft, base of the reaction
shaft ) and in the regions where particles are settled (
surface of the slag and selected places on the settler
and reaction shaft walls). In the energy transfer calcula-
tions, the energy balance of the wall includes the excess
of energy carried by the particles settled on the wall.
Hot particles produce higher temperature of the wall.
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The distribution of wall temperature points out areas of
furnace wall surfaces, where the accretion formation is
probable. The critical condition can be imposed by the
temperature of the wall. Formation of high fusible mag-
netite is thermodynamically favored below 1473 K, [18].
If the particles, already melted in the furnace, are settled
on the too (excessively) cold wall the accretion is likely
to be formed. These areas are located at the junction of
the reaction shaft roof and vertical walls, and exhibits
axial asymmetry. This is caused by the unsymmetrical
flow of the suspension in the reaction shaft, the large re-
calculation of hot gases and particles is predicted along
the back wall of the smelter.

7. Conclusions

An implementation of flux method and discrete or-
dinate method of solving radiation heat transfer in the
metallurgical full scale industrial process has been pre-
sented. The obtained results confirm the applicability of
the methods for engineering design purposes. An anal-
ysis of chemical and physical processes (combustion,
evaporation, etc.), where temperature controls the rate
of phenomena, the accurate temperature distribution in
radiation participating media is required to obtain re-
liable predictions. However, full model verification for
industrial process (like flash smelting) is often impos-
sible due to limited availability of measurements data.
Comparison of predicted temperature and heat loses dis-
tribution from the walls remain in reasonable agreement
with those resulted from industrial measurements.

The relative high efficiency and easy integration into
computer fluid dynamics (CFD) codes is a great advan-
tage of these methods. For the complex furnace geome-
try and cooling system the application of auxiliary heat
transfer model in the furnace walls should be advised.
Coupling energy transfer in interior enclosure of the fur-
nace with exterior heat transfer trough energy balance at
the internal walls removes dependence of the modeling
results on arbitrarily chosen distribution of wall temper-
atures. In this way more accurate results are obtained
and the modeling tasks could be extended to the anal-
ysis of cooling system design. Several other profits of
advanced process simulation have been discussed using
flash smelting process modeling as an example.
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