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THE PREDICTION OF HARDENABILITY USING NEURONAL NETWORKS

SYMULACJA HARTOWNOSCI OPARTA O ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH

The data base which was used for development of the model consists from measurements of hardness profile from jominy
test samples. It contains almost twenty thousand data vectors with extensive range of chemical composition.

The model was developed on the basis of neuronal networks and its successfulness was verified.

For each of four most influential chemical elements (carbon, nickel, chromium and molybdenum) two different diagrams
are presented in this work. One gives the information how the change of alloying element influences the hardness close to
surface. Other shows the change of hardenability with respect to change in chemical composition.

In the article it was publicized that, in spite of great variations in chemical compositions of each steel grade and data
base it self, very accurate predictions of hardenability can be maid.
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Baza danych zastosowana do stworzenia modelu hartownosci skladala sig¢ z pomiaréw uzyskanych metoda Jominy’ego.

Baza zawierata prawie dwadziescia tys. rekordéw z duzym zakresem zmiennosci sktadéw chemicznych. Stworzony model zostat
oparty o sztuczne sieci neuronowe i zostal pozytywnie zweryfikowany.

Dla kazdego z czterech najsilniej oddzialujacych pierwiastkéw (wegiel, nikiel, chrom i molibden) przedstawiono dwie
zalezno$ci w postaci wykreséw. Pierwsza podaje wplyw zawartosci pierwiastka na twardo§¢ na powierzchni prébki. Drugi

wplyw odleglosci od czofa prébki i zawartosci pierwiastka na hartownos¢.
W pracy wykazano, ze pomimo duzego zréznicowania sktadéw chemicznych réznych grup stali otrzymano zadowalajgca

dokiadno$¢ obliczert modelu.

1. Introduction

The simple analysis of the jominy test results could
not give the exact answer about the influence of the
chemical composition on the material hardness or hard-
enability. The reason is in the chemical composition vari-
ances within the particular steel grade prescribed toler-
ances. We have to deal with great number of data points
which can be mutual dependence, commonly also with
unlinear dependence.

Common methods for the representation of the link
between influential parameters are linear and unlinear
regression methods [1]. Nowadays the artificial intelli-
gence methods are frequently used, i.e. neuronal net-
works [2-5].
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In the presented work the use of the neuronal net-
works for the prediction of the hardenability of the con-
structional steel will be discussed.

2. Determination of the chemical composition on
the hardenability

The data base for the determination and further pre-
dictions of the hardenability depend from the chemical
composition are the results of hardness measurements
of jominy tests which were made in Metal Ravne. The
measurements were made on the distances from 1,5 mm
to 70,0 mm starting from the quenched surface.
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2.1. The neuronal network selection and data base
configuration

The program STATISTICA Neuronal Networks was
used. The main advantage of this program is that it con-
tains various types of the neuronal networks and that
make it suitable for solving problems from different ar-
eas, for regression as well as classification cases.

The problem which was studied is typical regres-

sion problem thus MLP (multilayer perceptrons) type
neuronal network was used. It contains three layers, ten
input parameters in first layer, five neurons in hidden lay-
er and one output parameter — hardness (figure 1). Ten
input parameters corresponds nine chemical elements
which were considered in the analysis, and tenth input
parameter was distance between quenched surface and
measuring point.

Fig. 1. The schematic presentation of neuronal network with 3 layers; 10 input parameters, 5 neurons in hidden layer and one output parameter

For the MLP training the Levenberg-Marquardtov
algorithm was used because it gives the best results for
the smaller neuronal networks (up to about hundred neu-
rons) with only one output parameter. It is generally
known as one of the best unlinear optimization algo-
rithms and one of the quickest algorithms for neuronal
networks training [6].

In the data base the results of the hardness mea-
surements on predetermined distance from quench sur-

face and the chemical composition of the corresponding
constructional steel sample were collected. The average,
minimum and maximum content of particular element is
presented in table 1 as illustration of chemical compo-
sition variations. Average content of particular chemical
element is here meant the average content in whole data
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base. It was calculated from equation w = —

i: i" element and
n: number of data points.

TABLE 1
Chemical composition of all constructional steel samples
C Si Mn P Cr Mo Ni Al Cu
w 0,341 | 0,261 | 0,627 | 0,014 1,213 | 0,244 | 1,090 | 0.020 | 0,164
Woin | 0,120 | 0,105 | 0,165 | 0,003 | 0,004 | 0,010 | 0,030 | 0,000 | 0,000
W, | 1,550 | 1,520 | 1,650 | 0,370 | 15,620 | 1,910 | 4,110 | 0,920 | 0420
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Statistical evaluation of predictions for the whole data base (n,,,r = 17326)

data mean
data S.D.
€rror mean
error S.D.

S.D. ratio

absolute error mean

correlation R

Statistical evaluation of predictions and representativeness for devided data base (nr = 11609; ny = 5717)

data mean

data S.D.

error mean

error S.D.

absolute error mean
S$.D. ratio

correlation R

TABLE 2a
training
46,43
10,51
-0,46
4,02
2,60
0,38
0,92
TABLE 2b
training | verification
46,43 46,43
10,55 10,43
-0,06 -0,14
3,97 397
2,50 2,51
0,38 0,38
0,93 0,92

The data base was constructed as matrix with 17.326
model vectors. In the model vector all for analysis nec-
essary data were collected, i.e. in our case one output
parameter — hardness and ten input parameters — 9 chem-
ical compositions and distance from quench surface.

The quality of the predictions was verified with sta-
tistical evaluation of results and the representativeness
with the comparison from different distributions between
training and verification data bases. In first case the
whole data base was used for training (Table 2a) and
in the second case the data base was divided into train-
ing and verification data base in the ordinary 2:1 ratio
(11609 + 5717 model vectors) — Table 2b.

From the comparisons of Tables 2a and 2b it can
be seen that the results are almost identical regardless
if one or two data bases were used. Also no significant
difference between prediction results for training and ver-
ification data bases can be observed. This convinced us
that the chosen data base is representative and also that
over learning of the neuronal network did not occurred.

2.2. Results and discussion

The influence of particular prediction parameter, i.e.
chemical element or distance to the quenched surface, on
the hardness is presented in Table 3. Factor Ny. is the
order of parameter importance or its influence on the
predictions, with E is presented the mean absolute error

in case of no consideration of particular parameter and
F is relative weight of parameter influence, i.e. the value
2,0 for F means that the error of the prediction without
particular parameter is twice as big as in the case of
whole data base. From the Table 3 it can be clearly seen
that the order of parameter importance is the same for
the predictions in training and verification data base.
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TABLE 3

The results of the sensitivity analysis. In upper section there are calculations for the fraining data base and in the lower part for the
verification data base

dist. C Si Mn P Cr Mo Ni Al Cu
Niny. 3 1 7 6 9 4 5 2 10 8
E 7,11 | 9,04 | 4,12 | 460 | 4,00 | 6,01 | 509 | 7,61 | 3,97 | 4,00
F 1.80 | 2,28 | 1,04 | 1,16 | 1,01 1,51 | 1,28 1 1,92 { 1,00 § 1,01
Ninr. 3 1 7 6 9 4 5 2 10 8
E 7,06 | 9,10 | 409 | 465 | 400 | 591 | 496 | 7,67 | 3,97 | 4,00
F 1,78 1 2,30 | 1,03 | 1,17 | 1,00 | 1,49 | 1,25 | 1,93 | 1,00 | 1,01

The aim of our work was prediction chemical com-
position influence on the hardness profile after quench-
ing, i.e. jominy test.

Carbon influence

The biggest influence on the accuracy of the hard-
ness prediction has carbon (Table 3). The carbon content
for constructional steels which were in our data base has
varied between 0,12 mass. % and 1,55 mass. %. On the
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Fig. 2a is diagram hardness vs. carbon content at the dis-
tance 1,5 mm from surface. Almost linear dependence
up to 0,6 mass. % C can be seen, between 0,7 and 1,0
mass. % C the gradient of increase is smaller and further
carbon increase can even decrease hardness. With dis-
tance from the sample surface the hardness decrease but
the tendency of carbon influence stays the same (figure
2b).

Fig. 2. Carbon influence at the distance 1,5 mm (a) and on the whole area of the hardness measurements (b)

Nickel influence

Second on the influence factor scale is nickel (Table
3) which content is within the limits between 0,03 mass.
% in 4,11 mass. %. From the graph on Fig 4a it can
be seen that its influence at 1,5 mm distance is much
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smaller. On next Fig. 4b, the nickel content influence is
presented with surface in the 3D graph. It can be seen
that for lower nickel contents the influence of distance
from quench surface is noticeable, but at higher nickel
values stays almost the same.

Fig. 3. Nickel influence at the distance 1,5 mm (a) and on the whole area of the hardness measurements (b)



Chromium influence

In the analyzed data base the chromium content
varies from almost 0,0 up to almost 16,00 mass. %
(0,004 — 15,62 mass. %). The variations have visible
influence up to 4,0 mass. %, the hardness has increased
from 30 up to 55 HRC. Further chromium content has
even opposite influence; it decreased for 5 — 10 HRC
(Fig. 4a).
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Figure 4b presents the whole area of analysis. It can
be seen that the hardness at lower chromium contents
drastically decrease with the distance, and even slight
increase for the chromium content over 3,0 mass. %.

It has to be stressed that in the data base only 0,7
% model vectors have chromium content over 4,5 mass.
% and only 5,8 % model vectors over 2,0 mass. %.

Fig. 4. Chromium influence at the distance 1,5 mm (a) and on the whole area of the hardness measurements (b)

Molybdenum influence

Molybdenum has on the whole section of chemical
composition and distance changes small influence, sim-
ilar to nickel (figure 5a and 5b). Some influence can be
seen at 1,5 mm for lower molybdenum contents (0,0 —
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0,5 mass. %), additional increase of molybdenum has no
noticeable influence. Also the increase in distance from
sample surface has no noticeable effect on hardness (fig-
ure Sb).

Fig. 5. Molybdenum influence at the distance 1,5 mm (a) and on the whole area of the hardness measurements (b

3. Conclusions

In the article the capability of the neuronal networks
is presented. Even for large data base and big variations
in alloying elements, i.e. chemical composition the pre-
dictions were good.

The main aim of this study was to establish possibil-
ity to predict hardness profile — hardenability on the basis
of constructional steel chemical composition. It was con-
firmed that not only for minor changes in chosen alloying
element amount, but also for wide variety in chemical
composition the hardenability can be determined. The
calculations can be made for one or more chemical el-

ements and also mutual influence of alloying elements
can be studied.
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