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WEIBULL DISTRIBUTION IN QUANTITATIVE METALLOGRAPHY OF PARTICLE SYSTEMS

ROZKLAD WEIBULLA W METALOGRAFII ILOSCIOWE] UKLADOW CZASTEK

Stereology for spheres, whose diameters distribution corresponds to the Weibull one is presented. Estimation method for
parameters of the Weibull probability density function (PDF) is proposed. In some metalic materials the particles (disperse
carbide phase, grains in polycrystalline metals) may be assumed as spheres whose diameter distributions may be described by
the Weibull PDF. Consequently, the measurement of particle size distribution may be reduced to stereological estimation of

the Weibull PDF parameters.

Przedstawiono stereologie dla kul, kt6rych Srednice majg rozktad Weibulla. Zaproponowano metodg estymacji parametréw
funkcji gestosci prawdopodobiefistwa (PDF) rozktadu Weibulla. W niektérych materiatach metalicznych czastki (dyspersyjne
fazy weglikowe, ziarna polikrystalicznych metali) mozna aproksymowaé kulami, ktérych srednice majg rozklad Weibulla.
W konsekwencji, pomiar rozkladu rozmiaréw czastek sprowadza si¢ do stereologicznej estymacji parametréw funkcji PDF

rozkladu Weibulla.

1. Introduction

A phase in material microstructure may be formed
of isolated particles arranged statistically uniform in the
space (e.g. disperse phase, grains of recrystallized met-
al, etc.). The fundamental geometric characteristics of a
particle is the size, i.e., one dimensional measure of the
largeness. Statistically, particle size is interpreted as a
value of continue random variable (random size) whose
probability distribution is determined by the probability
density function (PDF). The PDF describes the distribu-
tion type (e.g., the distributions like logarithmic normal,
gamma, Weibull, etc.). In quantitative metallography, the
probability distribution of random size is known as the
particle size distribution function [1]. Empirical stud-
ies of the size distribution are based on measurement
of the PDF by stereological methods. The selection of
measurement method depends on geometric properties
of the particles, the type of the size distribution and
the required precision. In a first approximation particles
are regarded as spheres. If the distribution type is not
known, for measurement usually the so-called Saltykow
algorithm or its later versions [1-4] are used. Deficiences
of the Saltykow algorithm limit its applications [5]. How-

ever, if the distribution type is known, the measurement
of the PDF may by reduced to its parameters only (the
so-called parametric method [S]). Of practical mean-
ings are usually two parameter functions only [5]. Some
metallographic studies of: carbide dispersions in steels,
graphite in nodular cast iron, and grains in recrystallized
metals and one phase alloys indicate the distributions:
logarithmic normal [2, 6], Rayleigh [7-9] and Weibull
[10]. Saltykow and DeHoff formulated a stereology for
spheres with logarithmic normally distributed diameters
[2, 11]. Rys and Wiencek have analysed similar problem
for the Rayleigh distribution [12]. The Rayleigh distri-
bution is a special case of the Weibull distribution, how-
ever a suitable stereology for the latter does not exist
yet. The aim of this work is extending the stereology
of spheres by taking into consideration the Weibull di-
ameter distribution case. The contents includes: (i) main
ideas of the general stereology for spheres; (ii) outlines
of stereology for spheres with Weibull diameter distri-
bution; (iii) analysis of empirical size distributions from
point of view of the Weibull distribution. The stereo-
logical considerations are limited to statistical quantities
only (PDF, moments, etc.).
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2. General stereology of spheres

A random set of non-overlapping spheres is given
(spheres of random diameter D). The sphere diameter D
is a random variable of PDF f3(D), whose values belong
to the interval [0, co]. The mean

(o]

(D" = fD’f3 (D)dD (r=0,1,2,..),

0

(1)

is the r order sphere diameter moment. For r = 1, (D)
is the simple expected value. For r = 2, the mean square
(D?) and (D) define the variance o3 = (D?) — (D)* and
the variation coefficient vp = op/{D), as well.

A circle (profile) is a planar section of sphere. The sec-
tion of a sphere system is a random set of profiles in
the plane. The profile diameter d is a random variable
of PDF f>(d). The mean
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is the r order profile diameter moment.
The diameter moments, (D) and (d") , satisfy the equa-
tion

. Vrr(3)
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where T is Euler gamma function [13]. In particular,
from Eq. (3) for r = 1, it follows

d =
-(-b—) = -4- (1 + UZD) i
For equal spheres ((D) = D and op = 0), Eq. (4) shows
that (d) = (n/4)D. This means (d)/(D) >(n/4), then for
vp > 0.523, (d)/(D) is greater than one which seems
paradoxical. The PDFs: f3(D) and f(d) satisfy the Wick-
sell equation [5, 13]:
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For a given f>(d), Eq. (5) is an integral equation which

has analytical solution with respect to the unknown
Sf(D).

For real sphere systems, the diameter D belongs to

the interval [0, D,,], where D,, is the largest diameter. In

such cases, the solution of Eq. (5) may be obtained by
numerical methods only. The most of numerical methods
for solution of the integral equation Eq. (5) result from
the Saltykow algorithm [3].

2.1. Saltykow algorithm

The [0, D,,] diameter interval is divided into k equal
intervals (classes) of A widths. The discrete profile and
sphere diameters are chosen as follows: d; = (i — 1/2)A
and D; = jA, (i, j = 1, ..., k). The discrete PDFs fo(i) =
f(dy) and f3(j) = f3(D;) follow the Saltykow’s equation
system [2]:
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with

ky= NP2- G- 1P = P -2 (7)

Eq. (6) and formula (3) for r = 1 are the basis of the
Saltykow algorithm. For exact f>(i) data, the main prop-
erties of the solution of Eq. (6) (i.e., the f3(;)) are depen-
dent on the number of classes k: (¢) for large k (k > 15),
solutions obtained by the Saltykow algorithm are satis-
factory; (ii) for small k the solution has a high systematic
error.

For f>(i) data with random errors, the Saltykow algo-
rithm is unstable (small perturbations of the data cor-
respond to large perturbations of the solution) [5, 14].
At the moment, there exist new algorithms for numeric
solution of the Wicksell Eq. (5), which are more stable
[15]. Finally, from the present work point of view it
should be noted, that for a given f3(D), Eq. (6) enables
calculation of the f,(i) values.

In the stereology of spheres Egs. (3), (5) and (6)
are quite general — they are independent of the diameter
distribution properties — therefore they form theoretical
basis for stereological measurement methods in quanti-
tative metallography of particles which can be approxi-
mated by spheres [1, 2].

3. Weibull stereology of spheres

Weibull stereology is a stereology of spheres with
Weibull diameter distribution, whose PDF is the follow-
ing

(D) = naD" ' exp(-aD"), ®8)

where @ and n are positive parameters [16]. The Weibull
PDF - Eq. (8) — is of positive asymmetry, wich decreases



when n increases. The substitution of Eq. (8) into Eq.
(1) results in

(D7) = a‘ﬁr(;:- + 1) (r=0,1,2,..). 9)

By means of Eq. (9) for given n and r = 1, the
parameter can be expressed by the mean diameter (D),

()

n{D)

(10)

Taking Eq. (10) into consideration, Eq. (9) may be writ-
ten

r(z+1)
(D) = = (DY r=0,1,2,..). an
(i +1)
The substitution of Eq. (11) into Eq. (3) results in
T (252) (11
(dy= —2‘@ (,f3 ) (1", ) (DY (r=-1,0,1,,,).
F(T)FH' (E + l)
(12)
From Eq. (12) for r = 1 results
d r(2+1
_(_) _n (n ) (13)

D)~ 4r2(le1)
Eq. (13) is a special case of Eq. (4), i.e. for the Weibull
distribution. From Eq. (13) for n = 2 results: (d)/(D) =

1; and for n > 2, (d)/{D) < 1. Substitution of Eq. (13)
into Eq. (12) for r = 2 results in
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Eq. (14) is a fundamental stereological equation in the
Weibull stereology of spheres, it connects the n parame-
ter for spheres and the profile diameter moments (d) and
(d%). In the Weibull stereology of spheres, the f3(D) in
Eq. (8) can be used as parametric function, the parame-
ters are n and a@. So, the stereological estimation of the
Weibull PDF f3(D) may be reduced to the estimation
of parameters n and & using Egs. (10), (13) and (14).
Egs. (10), (13) and (14) are the basis of an algorithm
for estimation of the Weibull PDF f;(D), this algorithm
will be called the Weibull stereology algorithm.
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4. Experimental

The aim of the experimental studies was to describe
some empirical particle size distributions by the Weibull
distribution. The description is based on approximation
of the empirical fo(d) function by the one, calculated
by Wicksell equation Eq. (5) including the Weibull PDF
f3(D) with n and @ parameters given by Egs. (10), (13),
(14) for the empirical (d) and (d*) moments. If the given
data (the empirical f>(d)) are approximated satisfactorily
by the calculated f>(d), then the particle size distribution
corresponds to the Weibull distribution and is described
by the PDF f5(D).

The precision of the size distribution description depends
on the accuracy of the approximation mentioned above.
In the first approximation, the accuracy is determined by
visual similarity of the f,(d) function graphs. A quanti-
tative information according to quality of the description
above gives comparison of the (D") moments which are
determined by Egs. (3) and (11).

Furthermore, if the particle size distribution corresponds
to the Weibull one, the f3(D) estimated by the Weibull
stereology algorithm and the Saltykow algorithm should
be consistent each other.

4.1. Empirical data

From papers [17-20] five particle systems (A, B, C,
D, E) — components of metallic material microstructures
— were selected, in particular,
A - Fe;C carbide dispersion in Fe-0.6%C steel (held at
700°C for 24h), [17], Fig. la;
B — coarse Fe;C carbide dispersion in Fe-0.6%C steel
(700°C/600h), [17], Fig. 1b;
C — MgC carbide dispersion in SW18 high speed steel
(1200°C/10h), [18], Fig. 1c;
D — recrystallized titanium, [19], Fig. 1d;
E — graphite in nodular cast iron, [20], Fig. le.
(For particle systems A, B, C in brackets, there are given
the heat treatment conditions, i.e, temperature and time
for particle coarsening process.)
Fig. 1 shows the material microstructures. The graphite
particles are nearly spherical, the titanium grains are
polyhedral, while the carbide particles are almost con-
vex.
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Fig. 1. Material microstructures:

(a) steel Fe-0.6%C, 700°C/25h

(b) steel Fe-0.6%C, 700°C/600h

(c) high speed steel SW18, 1200°C/10h
(d) recrystallized titanium

(e) nodular cast iron

For quantitative studies, the material microstructure par-
ticles are treated geometrically as spheres.

4.2. Quantitative metallography

The profile d diameter measurement was made by
Zeiss TGZ-3 particle size analyser, which is based on the
principle, that d is the diameter of a circle which area is
equal to the particle area. The TGZ-3 area comparison
is made visually, this may introduce uniknown errors for
not spherical particles.

For the selected particle section systems with particle

number N: N = 2400 (A), N = 2390 (B), N = 2300
(C), N = 550 (D) and N = 1001 (E), respectively, the
profile diameters were measured and then the empirical
fo(d) and moments (d") (r =1, 2) determined. Fig. 2
shows graphs of the empirical f>(d) functions, they are
quite regular and unimodal of a positive asymmetry. The
studies include:

— estimation of f3(D) by the Weibull stereology algo-
rithm,

— analysis of (D") moments,

— estimation of f3(D) by the Saltykow algorithm.



715

2
-]

[NERANAN

600

s 3

<4007

2007

0:
0.000 0.002

b 80.0

A, B, C (particle systems)

60600 Fe(, A
nesaaFeC, B
raasAME, C

0.004 0006 0.008

d, mm

60.0

20.0

0.0

'0.000 0.014 0.028 0.042 0.056 0.070

D, E (particle systems)

eeeo0 Ti,D
&a-aaA graphite, E

d, mm

Fig. 2. Empirical f;(d) functions: (a) steels (A,B,C); (b) titanium (D) and nodular cast iron (E)

4.3. Estimation by Weibull stereology algorithm

According to Eq. (10), for a given n, the a param-
eter can be expressed by (D). Consequently, the n and
(D) numbers were assumed as parameters of the Weibull

PDF f3(D) in Eq. (8). For the empirical f5(d), the (d")
moments (r = 1, 2) were determined. Then, by Egs.
(13) and (14) for empirical profile diameter moments
({(d) and (d?)) the n and (D) parameters were estimated,
the results are presented in Table 1.

TABLE 1

Parameters of profiles and the estimated Weibult PDF f;(D) for material microstructures

particle system {(d), mm d@HId)? n (D), mm
A 1.05 - 1072 1.38 1.49 091 . 1073
B 2.28 - 10-3 1.29 1.92 2.24 1073
C 1.53 - 1073 1.45 1.29 1.21 - 1073
D 2.49 - 1072 1.24 2.25 2.61 - 1072
E 1.25 - 1072 1.21 2.55 1.35 . 1072

From Table 1 it results, that the n parameter values
are: 1.29 < n < 2.55 and according to Eq. (13) for n < 2
the (d) > (D).

Next, by means of the f3(D) - given by Eq. (8)
with the empirical n and (D) parameters (Table 1) the
approximating f>(d) functions were calculated by means
of Saltykow’s Eq. (6). Fig. 3 shows the empirical and

approximating f>(d) function graphs; a visual similarity
is in principle acceptable (the largest difference is for
the case C, i.e., the M¢C carbide dispersion in the high
speed steel, Fig. 1c). It should be noted, that on the
left of the maximum of approximating functions with
largest asymmetry (n = 1.29 (C) and n = 1.49 (A)), the
empirical functions are represented by one value only.
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Fig. 3. Empirical f,(d) functions, its approximating functions and the Weibull PDFs f;(D) estimated by the Weibull stereology algorithm

for steels (a, b, ¢), titanium (d) and cast iron (e)

Because, the approximating f>(d) functions fit the
empirical ones, it can be concluded that for the select-
ed particle systems the size distribution corresponds to
the Weibull distribution. Fig. 3 shows also the graphs
of the estimated Weibull PDF f3(D). For n < 2, the
f>(d) graphs are shifted to the right relative to the f3(D)
graphs, which is in agreement with the relation for the
mean diameters: (d) > (D), (Eq. (13) and Table 1).

nodular cast iron

eeese graphite, E

0.02 0.03 0.04

d, D; mm

4.4. Analysis of moments

The moments (D") (r = 1, 2, 3) were determined by

two methods, i.e.,

I. by Eq. (3) in the general stereology of spheres, using

empirical moments (d"); and

IL by Eq. (11) for r = 2, 3 in the Weibull stereology of
spheres using empirical parameters n and (D) (for r = 1
the determination of (D) is based on Eq. 13).

The results are presented in Tables 2a — 2e.

0.008
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TABLE 2A
Moments (D") (r = 1, 2, 3) for Fe;C dispersion (A), determined by different methods
r (D" method | method Il
1 (D) 1.00 - 1073, mm 0.91 - 103, mm
2 (D% 1.34 . 10°°, mm? 1.22 - 107°, mm?
3 (D) 2.29 . 107, mm? 2.07 - 107, mm?
TABLE 2B
Moments (D") (r = 1, 2, 3) for Fe;C dispersion (B), determined by different methods
r (D") method 1 method 11
1 (D) 2.26 - 1073, mm 2.24 - 1073, mm
2 (D% 6.56 - 1075, mm? 6.51 - 107, mm®
3 (D) 2.27 - 1078, mm? 2.25 - 1078, mm’®
TABLE 2C
Moments (D) (r = 1, 2, 3) for MeC dispersion (C), determined by different methods
r (D" method I method 11
1 (D) 1.41 - 1073, mm 1.21 - 1073, mm
2 (DY) 2.74 - 107°, mm? 2.35 - 1075, mm?
3 (D%) 7.13 - 10~°, mm? 6.13 - 107, mm?
TABLE 2D
Moments (D") (r = 1, 2, 3) for titanjum grains (D), determined by different methods
r (D" method 1 method 11
1 (D) 2.77 - 1072, mm 2.61 - 1072, mm
2 (D% 8.78 - 10~*, mm? 8.30 - 10™*, mm?
3 (D) 3.20 - 10~%, mm’® 3.03 - 107°, mm?

From Tables 2a — 2e it results, that the (D) mo-
ment values (r = 1, 2, 3), which were determined by
different methods are close each other, however the val-
ues obtained by method I are slightly higher. The rel-
ative difference of the moments (calculated relative to
the method I) are less than 15%. The smallest difference
(1%) corresponds to the particle system B (FesC carbide
dispersion in Fe-0.6%C steel coarsened for 600 hours,
Fig. 1b), while the largest difference corresponds to the
system C (MgC carbide dispersion in high speed steel,
Fig. 1¢). It should be noted, that the largest difference be-
tween empirical and approximating f>(d) functions cor-
responds also to the particle system C, Fig. 3c.

4.5. Estimation by Saltykow algorithm

For the empirical f,(i) functions, i = 1, ..., k, the
estimated f3(j) functions, j = 1, ..., k, were determined

by the Saltykow algorithm (Eq. (6)). Fig. 4 shows the
estimated f3(j) functions compared with the f3(D) func-
tions, which is estimated by the Weibull stereology algo-
rithm, For small j-values the differences between f3(j)
and f3(D) are rather large; for the D and E particles (for j
= 1, f3()) < 0) it can result from the small particle num-
ber (N), i.e., N = 550 and N = 1001, respectively; but for
the A and C particles it can result from the small class
number (k), i.e., k = 8 and k = 13, respectively. However,
for larger j values, the f3(j) and f3(D) function values
are fairly close each other. For the D and E particles, the
higher f3(j) value scatter may result from small particle
number (N). For set C the difference between f3(j) and
f3(D) is the largest one; it is similar to the behaviour
of f>(d) functions (Fig. 3c) and the Dr moments (Table
2¢), as well.
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Moments (D) (r = 1, 2, 3) for graphite (E), determined by different methods

r (D" method 1 method 11
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3 (D% 4.10 - 107, mm? 3.85 - 10°%, mm’®
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Fig. 4. Comparison of f3(D) functions, estimated by Weibuii stereotogy and Saitykow (SA) algorithm for steels (a, b, c), titanium (d) and

cast iron (e)

In general, the estimated f3(D) functions belong to
the scatter region for the estimated f3(j) functions; it
means, the f3(D) functions smooth the f3(;) functions. In

5. Discussion and conclusions

A random set of spheres is described by the D diam-
conclusion, the results obtained by different algorithms eter PDF f3(D) and the (D") moments. The random set
are consistent; however the scatter of the f3(j) function of profiles is described by the d diameter PDF f>(d) and
values is high. the (d") moments. Egs. (3), (5) and (6) form a math-

ematical basis for stereological measurement methods



in quantitative metallography of spherical particles. The
f>(d) is accessible for direct measurements (in micro-
scope field of view or on microstructure photography).

Given, empirical f>(d) and the (d") moments, allow
for the determination of: (i) (D") moments (Eq. (3));
and (ii) f3(;) function (Saltykow algorithm, Eq. (6)).
If the sphere diameters distribution corresponds to the
Weibull one, then Eqgs. (10), (13) and (14) form the basis
for stereological estimation method of the Weibull PDF
f3(D) function parameters (n, @) (the Weibull stereology
algorithm).

A particle size distribution corresponds to the
Weibull one, if it is possible to approximate the em-
pirical data by a f,(d) approximating function, which is
calculated by the Wicksell equation Eq. (5) (usually in
a discrete form of the Satykow’s equations — Eq. (6))
including the Weibull PDF f3(D). Because for the anal-
ysed particle systems such an approximation is possible,
one can assume, the particle diameters distribution cor-
responds to the Weibull distribution. The (D) moments
analysis shows that the estimation precision depends on
the n parameter of the Weibull PDF f3(D). In particular,
for small n values (n = 1.29 for particle system C) the
precision is worse. It is important to notice, that for all
particle systems (A-E) the (D") moments determined by
Eq. (3) are larger than those which were determined by
the Weibull stereology methods (Table 2a — 2e); it seems,
the systematic difference could be connected with the
particle form which less or more deviates from sphere,
Fig. 1.

Finally, if the n parameter of the Weibull PDF and
the k class number in the Saltykow algorithm are not
too small (particle systems B, D, E), the f3(D) functions
— estimated with Weibull stereology algorithm — can be
used for smoothing of the f3(j) functions — estimated
with Saltykow algorithm.

6. Conclusions

1. If a sphere diameter distribution corresponds to the
Weibull distribution, then estimation of the Weibull
PDF f;(D) may be reduced to estimation of its pa-
rameters (a, n) by the Weibull stereology algorithm.

2. An empirical particle size (sphere diameter) distribu-
tion corresponds to the Weibull one, if the approx-
imating function f(d) (given by Wicksell equation
Eq. (5) including the Weibull PDF f3(D)) fits to the
data (i.e., the empirical f>(d)).

3. As the first approximation, the analysed empirical
particle size distributions may be described by the
Weibull distribution.
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