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NUMERICAL MODEL OF BINARY ALLOYS SOLIDIFICATION BASING ON THE ONE DOMAIN APPROACH AND THE SIMPLE 
MACROSEGREGATION MODELS

MODEL NUMERYCZNY KRZEPNIĘCIA STOPÓW DWUSKŁADNIKOWYCH Z WYKORZYSTANIEM METODY 
JEDNEGO OBSZARU I PROSTYCH MODELI MAKROSEGREGACJI

In the paper the thermal processes proceeding in the domain of solidifying binary alloy are considered. The mathematical 
model of solidification and cooling processes bases on the one domain method (or fixed domain method). In such a model the 
parameter called a substitute thermal capacity (STC) appears. At the stage of STC construction the macrosegregation process 
described by the lever arm rule or the Scheil model is taken into account. In this way one obtains the formulas determining the 
course of STC resulting from the certain physical considerations and this approach seems to be closer to the real course of thermal 
processes proceeding in domain of solidifying alloy. In the final part the examples of numerical solutions basing on the finite 
difference method are presented.

Keywords: alloys solidification, one domain approach, macrosegregation process, substitute thermal capacity, numerical 
modeling.

W pracy rozpatruje się procesy cieplne zachodzące w obszarze krzepnącego i stygnącego stopu dwuskładnikowego. Model 
matematyczny tych procesów bazuje na podejściu nazywanym metodą jednego obszaru. W modelach tego typu pojawia się pa-
rametr nazywany zastępczą pojemnością cieplną. Na etapie jej definiowania autorzy uwzględnili proste modele makrosegregacji 
wynikające z reguły dźwigni i znanego modelu Scheila. Otrzymane zależności determinujące przebiegi pojemności zastępczej na 
podstawie pewnych rozważań fizycznych wydają się lepiej przybliżać rzeczywisty przebieg procesów cieplnych zachodzących 
w obszarze krzepnącego stopu. W końcowej części pracy pokazano wyniki rozwiązań numerycznych uzyskanych przy wykorzy-
staniu metody różnic skończonych.

1. Introduction

Numerical computations of macroscopic thermal processes 
proceeding in the domain of solidifying casting are based on the 
different mathematical models. In the case of alloys, however, 
the most effective approach is connected with the introduction of 
the model called the one domain method (e.g. [1]). The govern-
ing equation corresponding to the one domain method contains 
the parameter called a substitute thermal capacity (STC). The 
function describing STC is connected with the function deter-
mining the local volumetric fraction fS of solid state between 
border temperatures corresponding to the beginning and the 
end of solidification process. So, the capacity of source function 
controlling the solidification process is proportional to the time 
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derivative of fS and if one assumes the knowledge of the function 
fS = fS (T ) (T denotes a temperature) then after the mathematical 
manipulations the STC can be defined. Such approach is, among 
others, presented in [2,3].

Substitute thermal capacity can be also defined directly 
omitting the function fS (or fL). The general form of STC is 
assumed arbitrary, while the parameters appearing in this func-
tion can be found using the required conditions, among others, 
the integration of STC between border temperatures should 
correspond to the change of physical enthalpy due to the cool-
ing and solidification processes proceeding in the mushy zone 
domain [4,5,6].

The alloy solidification process is accompanied by the 
changes in the chemical composition of the molten and solidified 
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parts of the casting (macrosegregation).The macro model of this 
phenomenon is based on the system of two partial differential 
equations (the diffusion equations) supplemented by the boundary 
condition on the moving boundary and the remaining boundary 
and initial conditions [7]. Different simplifications are often ac-
cepted at the stage of segregation process modelling. For example, 
the diffusion process in the solid state is neglected, while the 
changes in concentration of alloying component in the molten 
metal takes place only in the layer close to the solidification front, 
in the remaining liquid sub-domain the concentration is aligned 
[8,9]. The further simplification of this model is the assumption 
that the concentration field in domain of molten metal can be 
approximated by the broken line (a broken line model [10]). The 
other approach to the macrosegregation modeling results from the 
assumption that the diffusion coefficients for the liquid and solid 
state are infinitely large (the lever arm model) or that the diffusion 
coefficient of solid is equal to zero, while the same coefficient of 
liquid is almost limitless (the Scheil model). The models above 
discussed concern the segregation process proceeding in the 
macroscale. In literature one can also find the models basing on 
some different approach and concerning the microscale processes. 
As an example one can mention the papers [11-15].

2. One domain method

Let us consider the following energy equation

 
( , )( , )( ) ( ) ( , ) Sf x tT x tc T T T x t L

t t
 (1)

where c(T ) is a volumetric specific heat of casting material, λ(T) 
is a thermal conductivity, L is a volumetric latent heat, T = T(x, t), 
fS = fS (x, t) are the temperature and the local volumetric fraction 
of solid state, x, t are the spatial co-ordinates and time.

We denote the temperatures corresponding to the beginning 
and the end of solidification process by TL and TS. The energy 
equation corresponding to the one domain approach results from 
the assumption that the temperature-dependent function fS (T ) 
in the interval [TS, TL] is known. Then
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Introducing this formula to energy equation (1) one obtains
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where the parameter
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is called ‘a substitute thermal capacity’, while fL = 1− fS is the 
local liquid state fraction in the neighborhood of the point consi-
dered. One can see that for T < TS : fS = 0, while for T >TL: fS = 1 
and then the derivatives d fS /dT = 0. Summing up, the following 
definition of substitute thermal capacity can be accepted [2,3]
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where cL, cP, cS are the volumetric specific heats of molten metal, 
mushy zone and solid state sub-domains. One can see, that the 
equation (3) can be used as the model of thermal processes 
proceeding in the whole, conventionally homogeneous, cast-
ing domain. The function fS (T ) in the interval [TS, TL] should 
be monotonic, decreasing and from the scope from 1 to 0. One 
can construct the large number of such functions, of course, 
and this approach leads to the purely mathematical hypotheses 
concerning the course of function fS (see: [16]). For example 
the following function
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can be considered. The formula (7) fulfils all necessary condi-
tions imposed on the course of function fS (T ) and then 
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The quotient L/(TL – TS) = csp is called ‘a spectral latent 
heat’. Above formula is very often used for the case n = 1 (e.g. 
[3]), then

 ( ) , [ , ]P P sp S L
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In literature one can find also the other way of C(T ) con-
struction. The mathematical form of substitute thermal capacity 
is assumed a’priori and the function proposed must fulfill the 
condition resulting from the change of physical enthalpy in the 
interval [TS, TL], namely

 ( ) dL

S

T
P L ST

C T T c T T L  (10)

As an example the ‘bell type’ function describing the 
substitute thermal capacity for [TS, TL] is considered [5,6]. The 
adequate fourth-degree polynomial fulfils the condition (10), 
additionally C(TS) = cS, C(TL) = cL and the derivatives of C(T ) 
at the points TS and TL are equal to 0. In Figure 1 the course of 
STC for carbon steel (0.44%C) is shown [5].

One can see, that the function shown in Figure 1 is con-
tinuous and differentiable which is important in the case of 
considerations requiring the knowledge of derivative dC(T )/dT 
(e.g. sensitivity analysis).
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Fig. 1. Bell type approximation of STC

The typical mathematical model of the real foundry tech-
nology requires the supplement of equation (3) by the equation 
determining the course of thermal processes in a mould sub-
domain, in particular
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where the index m identifies the mould sub-domain and the non-
homogeneous moulds can be also considered.

On the external surface of mould the Robin condition (the 
3rd type of boundary condition)
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is, as a rule, accepted. In formula (12) α is a heat transfer coef-
ficient, Ta is an ambient temperature, ∂/∂n denotes a normal 
derivative.

On the contact surface between casting and mould the 
continuity condition is given
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where R is a thermal resistance. For R = 0 (such assumption 
can be done in the case of sand mix mould) the last condition 
takes a form
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The initial temperature distribution for t = 0 is also known

 0 00 : ( , 0) ( ) , ( , 0) ( )p m pmt T x T x T x T x  (15)

The mathematical model presented above can be more 
complicated. One can consider the convectional component of 

heat transfer which appears in the molten metal sub-domain. 
The phase changes occurring in the solid state, the segregation 
effects etc. can be also taken into account. Generally speaking, 
the model above presented belongs to the group of macro models 
of solidification.

3. Simplified macrosegregation models 
and definitions of STC

The macrosegregation models discussed in this chapter 
correspond to the assumptions leading to the formulas deter-
mining the values fL(zL) when the diffusion coefficients of solid 
and liquid tend to infinity (the lever arm model) or the diffusion 
coefficient for liquid also tends to infinity, while the diffusion 
coefficient of solid is equal to zero (the Scheil model). Both 
models constitute the quite good aproximation of the macroseg-
regation processes proceeding in the conditions of volumetric 
solidification. Presented below considerations are based on the 
mass balances of alloy component. For two successive time 
levels t and t + ∆t one has the following form of mass balance

 S S S L L L

S S S L L L

V t z t V t z t

V t t z t t V t t z t t
 (16)

where zS, zL are the concentrations of alloy component in the 
solid and liquid phases, ρS, ρL are the mass densities.

The values of VS,VL and zS, zL for time t + ∆t one can find 
using the Taylor series (only the first derivatives are taken into 
account)
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Introducing formulas (17) – (20) to (16) and neglecting the 
terms containing ∆t 2 one obtains
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or, taking into account the definitions of fS and fL 
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We multiply the equation (22) by ∆t. Next we introduce the 
definition of partition coefficient k = zS /zL and the dependence 
fS = 1 − fL. Then
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Finally after not very complex mathematical manipulations 
one obtains

 
d 1
d
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The analytical solution of equation (24) is found under 
the assumption that the partition coefficient is a constant value 
(the lines TS and TL on the equilibrium diagram are the straight 
ones and they start from the same point TP, see: considerations 
presented below). The equation (24) is a linear one and it should 
be solved for the condition z = z0 : fL = 1. Finally
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For the same values of mass densities the last equation 
takes a form

 0
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Knowledge of the function fL(zL) allows one to determine 
the course of STC. So, the straight lines determining the depend-
encies TS(zS) and TL(zL) are of the form
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where Tp is a solidification point of pure metal, aL and aS are the 
slopes of appropriate border lines. Then
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where T0 is the temperature corresponding to the concentra-
tion z0. Because
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consequently
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or introducing in a place of concentration the dependencies (28) 
and assuming ρL = ρS one obtains
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We can also assume that in equation (22) the derivative 
d

0
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 and then the considerations similar as previously lead 

to the differential equation corresponding to the Scheil model. 
The solution of this equation for ρL = ρS is the following
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4. Examples of computations

The cylindrical casting (cast carbon steel – 0.44%C, 
H = 0.08 m, R = 0.02 m) made in the typical sand mould is 
considered – Figure 2. Thermophysical parameters of casting 
and mould materials are the following: cS = 4.875 MJ/(m3K), 
cL = 5.904 MJ/(m3K), cP = 5.39 MJ/(m3K), L= 1985 MJ/m3, 
λS = 35 W/(mK), λL = 20 W/(mK), λP = 27.5 W/(mK), TP = 1535°C, 
TL = 1505°C, k = 0.465, cm = 1.75 MJ/m3, λm = 1 W/(mK). Initial 
temperature of casting domain equals 1550°C, while the initial 
temperature of mould equals 30°C. The thickness of mould is 
large enough that on the external boundary one can assume the 
no-flux condition, in other words the coefficient α in equation 
(12) is equal to zero.

Fig. 2. Casting and mould, differential mesh

At the stage of numerical modeling the variant of finite dif-
ference method discussed in [16,17] has been used. The uniform 
differential mesh was created by 900 nodes (30×30), h = 0.002 m, 
time step was equal to 0.05 s.

In Figure 3 the cooling curves at the points A, B, C selected 
from the casting domain are shown. Both the solutions corre-
sponding to the lever arm model and the Scheil one are shown. 
At the final stages of solidification process the differences are 
visible. This problem will be discussed in the next chapter.
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Fig. 3. Cooling curves at the points A and B, 1 – lever-arm model, 
2 – Scheil model

5. Final remarks

The subject of the paper is connected with the application 
of numerical methods for the analysis of thermal processes pro-
ceeding in the solidifying binary alloy. The mathematical model 
is based on the one domain method, while the substitute thermal 
capacities result from the simple macrosegregation models (the 
lever arm rule and the Scheil model). The results obtained are 
somewhat different. It results, first of all, from the fact that in 
the case of Scheil model the value of the function fL has never 
reach 0. So, the authors assumed that the end of solidification 
process takes place when fL < 0.05. This assumption allows 
one to find the temperature assuring the fulfillment of integral 
condition (10). Despite the fact that this condition was satisfied, 
however, non-zero final value of fL may cause the disturbances 
in the final stages of solidification modeling. Such problems did 
not occur in the case of complete mixing model. At the stage of 
numerical computations the FDM has been used, in the case of 
more complex shape of casting the generalized version of the 
FDM [18] can be also applied.
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