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BACK-DIFFUSION IN CRYSTAL GROWTH. PERITECTICS 

DYFUZJA WSTECZNA WE WZROŚCIE KRYSZTAŁU. PERYTEKTYKI

A model for the solute micro-segregation/redistribution is delivered. The description is associated with solidification of the 
peritectic alloys. The peritectic transformation is treated as the phenomenon which modifies the solute redistribution profile resulting 
from both partitioning and back-diffusion. The relationship allowing for the amount of peritectic phase calculation is also formulated. 
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Proponowany jest model mikrosegregacji/redystrybucji składnika stopowego. Opis ten dotyczy krystalizacji stopów perytek-
tycznych. Transformacja perytektyczna jest traktowana jako zjawisko, które modyfikuje profil redystrybucji składnika wynikający 
z rozdziału i dyfuzji wstecznej. Sformułowane jest także równanie, które pozwala wyznaczyć ilość fazy perytektycznej. 

Notation

DS – coefficient of diffusion into the solid, [m2/s]
ki – equilibrium partition ratio for i-th solidification range, 

[mole fr./mole fr.]
ki

0 – first component of the ki – partition ratio, [mole fr./mole fr.]
ki

L – second component of the ki
L – partition ratio, [mole fr./

mole fr.]
li0 – amount of the liquid at the beginning of the i-th solidi-

fication range, [dimensionless] 
L0 – amount of the liquid at the beginning of solidification; 

L0 = 1, [dimensionless] 
Ni

B – current solute redistribution in the solid for the i-th range, 
[mole fr.]

Ni
L – current solute concentration in the liquid for the i-th 

range, [mole fr.] 
Ni

S – current solute concentration at the s/l interface for the 
i-th range, [mole fr.]

N0 – nominal solute concentration of a studied alloy or Ni–1  
for i = 1, [mole fr.]

Ni – solute concentration at the end of the i-th solidification 
range, also point on liquidus line at which peritectic 
transformation occurs, [mole fr.]
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Ni–1 – point on liquidus line at which the peritectic transforma-
tion occurs, [mole fr.]

N–S – average solute concentration within the solid, [mole fr.]
q – number of solidification ranges in a given phase dia-

gram,
Ri – half the space of primary phase, [m]
Ri

max – half the space of: primary phase + peritectic phase, [m]
Ri

min – half the space of primary phase which remains after 
peritectic reaction, [m]

ti
f – local solidification time for the i-th solidification range, 

[s]
ti

p – local peritectic transformation time for the i-th solidi-
fication range, [s]

T – temperature, [K]
x – current amount of a growing crystal; x  [0.1], [dimen-

sionless]
xi – amount of primary phase which takes part in peritectic 

reaction, [dimensionless]
xi

0 – amount of the crystal at a given stage of solidification 
when solidification is arrested within the i-th solidifica-
tion range, [dimensionless]

xi
max – amount of: peritectic phase + primary phase after peri-

tectic reaction, [dimensionless]
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xi
min – amount of remaining primary phase after peritectic 

reaction, [dimensionless] 
X0 – amount of a growing crystal at a given solidification 

stage, [dimensionless]
αi

D – back-diffusion parameter for the primary phase forma-
tion, [dimensionless]

αi
P – back-diffusion parameter for the peritectic phase forma-

tion, [dimensionless]
βi

ex – coefficient of the extent of redistribution, [dimension-
less]

βi
in – coefficient of the intensity of redistribution, [dimension-

less]

Introduction

Most castings show some evidences of a fine-scale solute 
redistribution. This compositional inhomogeneity can be re-
vealed as a solute concentration gradient on a micro-scale, and 
additionally, it can result in the formation of a second phase. 
The inhomogeneity is additionally perturbed when solidifica-
tion is accompanied by peritectic transformations or peritectic 
and eutectic transformations which appear during solidification 
sequentially. 

The current model provides the definitions for the solidi-
fication path, s/l interface path and redistribution path in the 
case of solidification of an alloy which comes from the multi-
peritectic phase diagrams. The current model is a kind of the 
development of the precedent models delivered for eutectic 
alloys solidification and resulting solute redistribution, [1-24]. 
Some examples of the model application are mentioned. 

1. Scheil’s type model with peritectic reactions 

The Scheil’s model [1], (with α = 0), has been successfully 
developed for solidification of some alloys from the multi-
peritectic phase diagrams, [25-29]. The following equation is 
formulated to describe the solidification path:
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The s/l interface path is given as: ;0 ;0S LN x k N x

1 11 / 1 ik
i ik N x x . Since α = 0, and no diffusion occurs, 

[6], the redistribution path N B(x;0) means the same as the s/l 
interface path, N B(x;0) ≡ N S(x;0). The mass balance is satisfied 
in this model, [25-29]. 

2. Micro-segregation with finite back-diffusion 
and peritectic transformations

Solidification accompanied by the peritectic transformation 
results in the intermetallic phase or compound formation. 

 max min
i i i ix +liquid N x x   (2)

Formation of the intermetallic phase/compound can be 
described by an universal definition of the partition ratio which 
varies with the Ni

L(T) – liquidus line, Eq. (3).

 0
1( ) / 1,...,L L L

i i i i i ik N k k N N T i q   (3) 

The Ni–1 solute concentration is equal to the N0 – nominal 
solute concentration for the first solidification range (with i = 1). 
When, ki

L = 0, then the partition ratio becomes constant: ki = ki
0. 

Additionally, 
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2a. Solidification with constant partitioning 

Intermetallic phase formation is usually accompanied by 
a constant partitioning. Thus, ki

L = 0 in Eq. (3) and ki (Ni
L) = ki

0 
= const. is to be assumed: 
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  (6)

Eq. (6) can be solved with the use of the so-called travelling 
initial condition: 1

0
1

0 ),,,(0, iiii
D
i

L
i N=kNlN  which is applied 

at every peritectic transformation appearing sequentially as vis-
ible in a given phase diagram.

Consequentially, the solution to the differential equation 
for micro-segregation, Eq. (6), defines the solidification path: 
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The micro-segregation which results from the partitioning 
is given as follows:
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Eq. (8) describes the s/l interface path, that is: solute 
concentration at the s/l interfaces which appeared during solidi-
fication in sequence. However, the redistribution path is to be 
described separately: 
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Additionally, 
a/ coefficient of the extent of redistribution:
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b/ coefficient of the intensity of redistribution 
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are formulated by considering the mass balance in the envis-
aged system.

2b. Solidification with varying partitioning

Nothing opposites against the use Eq. (3) in full form in 
order to formulate the differential equation for micro-segregation 
dealing with the multi-peritectic phase diagrams and intermetallic 
phase/compound formation. 
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In this case, the following solution to Eq. (12), in an ana-
lytical form, is obtained:
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The travelling initial condition: 0
1 1(0, , , , )L D

i i i i i iN l N k N  
was applied to Eq. (12) to formulate the definition of the solidi-
fication path, Eq. (13). Furtherly, the Eq. (13) is rearranged to 
define the s/l interface path:
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The redistribution path is described separately, as sup-
posed previously: 
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Consequentially, the definition of the coefficient of the 
extent of redistribution is given by the following formula:
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whereas the analytical form of the coefficient of the intensity 
of redistribution is: 
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where the applied hyper-geometrical function:
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has the following properties:
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and 
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2c. Amount of the peritectic phase 

The (xi
max – xi

min) – amount of the peritectic phase which 
results from peritectic transformation, Eq. (2), can also be 
calculated due to the mass balance consideration. At first, the 
definition of the xi

max – parameter is determined: 
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Next, the definition of the xi
min – parameter required by 

Eq. (2), is delivered:
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Finally, the xi – amount of primary phase which enters into 
peritectic transformation, Eq. (2), is developed with the use of 
Eq. (7) formulated for constant partitioning:
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However, the xi – amount of primary phase is to be deter-
mined due to adequate rearrangement of Eq. (13) formulated 
for varying partitioning. 
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Eq. (2)–Eq. (21) have found practical application in the 
description of different technologies, like: diffusion soldering, 
[30-34], diffusion brazing, [36,37], ceramic spraying on metallic 
substrate, [30], and D-gun spraying of Fe-Al particles onto steel 
substrate, [35,38]. 

The current mathematical approach can be fully introduced 
into the numerical simulation of the continuous casting technol-
ogy, [39,40], or into a simple description of the crystal growth 
for which an improvement of material properties by means of 
unidirectional solidification is required, [41].

3. Concluding remarks

The new definition for the partitioning has been formulated, 
Eq. (3). This formula has an universal character and can be suc-
cessfully applied in the description of the intermetallic phase/
compound formation. Its full form should rather be used in the 
case when the liquidus and solidus lines have particular localiza-
tion or complicated shape. Even, the use of the full form of the 
partition ratio definition, Eq. (3) results in the analytical solution, 
Eq. (13), to the differential equation for micro-segregation, Eq. 
(12). All the terms of this definition, Eq. (3) have the same unit. 

Both solutions, Eq. (7), Eq. (13), to the differential equa-
tions, Eq. (6), Eq. (12), respectively, have an universal character. 
Therefore, these solutions are reducible to the analogous solution 
obtained for eutectic alloys, [24], while applying ki

L = 0, and 
li0 = L0 with q = 1. 

The definition of the solute redistribution can be intro-
duced into the formula which determines the degree of solute 
macro-segregation: imacr. = [N B

max – N B
min ] /N0, [42]. It allows for 

illustrating the so-called macro-segregation maps, [43]. 
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