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BACK-DIFFUSION IN CRYSTAL GROWTH. EUTECTICS 

DYFUZJA WSTECZNA WE WZROŚCIE KRYSZTAŁU. EUTEKTYKI

Solute segregation/redistribution model for some eutectic alloys is presented. The differential equation for the solute micro-
segregation during solidification accompanied by the back-diffusion is formulated. The solution to this equation results in the 
definitions of: solidification path, solid/liquid (s/l) interface path and redistribution path. An equation for the estimation of the 
amount of equilibrium and non-equilibrium precipitates is also delivered. It is proved that the current model is universal one. 
Thus, the model reduces perfectly, mathematically to both description of diffusion-less solidification and model of equilibrium 
solidification. 
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Przedstawiono model segregacji/redystrybucji składnika dla stopów eutektycznych. Sformułowano równanie różniczkowe 
dla mikrosegregacji składnika podczas krystalizacji, której towarzyszy dyfuzja wsteczna. Rozwiązanie tego równania pozwoliło 
na zdefiniowanie ścieżek: krystalizacji, frontów krystalizacji i redystrybucji. Sformułowano równanie dla oceny ilości wydzieleń 
równowagowych i nierównowagowych. Pokazano, że model jest uniwersalny. Dlatego, redukuje się perfekcyjnie, matematycznie 
do opisu krystalizacji bez dyfuzji a także do modelu krystalizacji równowagowej. 

Notation

Ds – coefficient of diffusion into the solid, [m2/s]
iD – amount of the non-equilibrium precipitate, [dimension-

less] 
iE – amount of the equilibrium precipitate, [dimensionless]
iK – total amount of precipitates, [dimensionless]
k – equilibrium partition ratio, [mole fr./mole fr.]
L0 – amount of the liquid at the beginning of solidification; 

L0 = 1, [dimensionless] 
NB – current solute redistribution in the solid, [mole fr.]
NL – current solute concentration in the liquid, [mole fr.] 
NS – current solute concentration at the s/l interface, [mole fr.]
N0 – nominal solute concentration of a studied alloy, [mole fr.]
N
–

s – average solute concentration within the solid, [mole fr.]

* INSTITUTE OF METALLURGY AND MATERIALS, POLISH ACADEMY OF SCIENCES, 25 REYMONTA STR., 30-059 KRAKÓW, POLAND

# Corresponding author: w.wolczynski@imim.pl 

R – half the space of the crystal, [m]
t f – local solidification time, [s]
t d – homogenization time for the diffusion length, [s]
T – temperature, [K]
x – current amount of a growing crystal; x  [0,1], [dimen-

sionless]
xK – finale amount of the crystal, [dimensionless]
X0 – amount of a growing crystal at a given solidification stage, 

[dimensionless]
α – back-diffusion parameter (Fourier Number); α  [0,1], 

[dimensionless]
βex – coefficient of the extent of redistribution, [dimensionless]
β in – coefficient of the intensity of redistribution, [dimension-

less]
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Introduction

Most castings show some evidences of a fine-scale solute 
redistribution. This compositional inhomogeneity can be re-
vealed as a solute concentration gradient on a micro-scale, and 
additionally, it can result in the formation of a second phase. 

 One of the most important challenges encountered in the 
alloy’s solidification is the ability to predict the effects of process-
ing parameters on nature and extent of both micro-segregation 
and solute redistribution. This kind of approach is highly de-
sirable in view of recent development in the thermodynamic 
modelling and phase diagrams estimation. The description of 
the solute redistribution should involve the application of some 
parameters of the full physical meaning. Moreover, the model is 
to be an universal approach applicable in the case of plate-like 
morphology formation (1D), oriented structure solidification 
(2D), and equiaxed grains growth (3D). 

1. Micro-segregation without back-diffusion 

The origin of micro-segregation comes from the partitioning 
of the solute between solid and liquid during a crystal growth. 
The solute segregation as a result of the non-equilibrium so-
lidification was the subject of the Scheil, [1] and Krupkowski, 
[2], treatments. Scheil, [1], was able to deliver the equation 
which can be used to predict micro-segregation in the case of 
non-equilibrium crystal growth while applying the simplest 
equilibrium partition ratio, Eq. (1). The back-diffusion does not 
operate in this approach, therefore, α = 0, Eq. (1). 

 k = NS (x;0) / NL (x;0) (1)

The major assumptions made in this derivation are: no diffu-
sion into the solid, α = 0, complete mixing in the liquid and local 
equilibrium at the solid/liquid (s/l) interface. Some consequences 
for the behavior of solid result from these assumptions. A hetero-
geneous nucleus can be introduced in the liquid just before the 
beginning of solidification, [3]. In some situations the nucleus can 
present the nominal solute concentration, [4,5]. The crystal seed is 
consequently surrounded with the solid sub-layers which appear 
in sequence due to the temperature drop. The solute concentration 
in the first sub-layer is equal to the product of the partition ratio 
and nominal concentration of a given alloy, NS (0,0) = k N0. Every 
subsequent sub-layer conserves the solute concentration which 
corresponds with appropriate temperature at which it came into 
existence. Finally, the solidification path is described as follows: 

 NL (x;0) = N0 (1 – x)k –1 (2)

Eq. (2) has been obtained due to the solution of an ad-
equate differential equation to which an initial condition was 
applied: N L (0;0) = N0 . Consequentially, the s/l interface path 
is given as: NS

 (x;0) = k N L
 (x;0) = k N0 (1 – x)k–1. The redistri-

bution path N B (x;0) means the same as the s/l interface path, 
N B (x;0) ≡ N S (x;0), since, α = 0, [6]. The mass balance is satis-
fied in this description, [7,8]. 

2. Micro-segregation with complete back-diffusion 

The mass balance applied to the description of the so-called 
equilibrium crystal growth (Lever Rule) can be referred to the 
current universal model for micro-segregation/ redistribution. In 
the case of the equilibrium solidification, the solute concentration 
in the liquid is defined as follows: 

 NL (x;1) = N0 (1 + kx – x)–1 x  [0,1] (3a)

 N L (0;1) = N0;  N L (1;1) = N0 / k (3b)

The solidification path, Eq. (3), is written for the so-called 
complete diffusion into the solid, α = 1. The s/l interface path is 
given: NS (x;1) = k NL (x;1) = k N0 (1 + kx – x)–1 whereas the redis-
tribution path is written: NB (x; X0;1) = NS (X 0;1); NB (1;1;1) = N0. 

3. Micro-segregation with finite back-diffusion 

The theory for the equiaxed crystal growth presented by 
Eq. (2) has been subsequently developed by Brody & Flemings, 
[9] for directional solidification. The definition for the α – back 
diffusion parameter has been introduced, [9]: 

 α = DS t f R–2 (4)

The Brody & Flemings theory, [9], presents some simpli-
fications and assumptions which are not acceptable. First of all, 
the α – back diffusion parameter tends to infinity, [9]. Then the 
solute redistribution is identical to the micro-segregation which 
appears at the s/l interface and consequentially the mass balance 
is not conserved in such a system described by the mentioned 
approach, [9]. Thus, the theory, [9] was subjected to many modi-
fications and generalizations, [10-21]. Nevertheless, the mass 
balance violation was not removed from the model, [9], and 
back-diffusion parameter tends to infinity. In the consequence, 
the mentioned models [9-21], are mathematically reducible to 
the non-equilibrium solidification, Eq. (2), but not reducible to 
the Lever Rule, Eq. (3). The current model improves the imper-
fections involved by the mentioned models, [9-21]. Thus, the 
following equation is formulated: 

 ;
; ;

S
S S

S
p

dN xD
d xN x N x dx x dx

R v dx
 (5)

The l.h.s. of Eq. (5) presents the amount of solute, which 
entered inside the crystal due to back-diffusion, when the newly 
growing dx – layer appeared; the first term of the r.h.s. of Eq. (5) 
presents the amount of solute, which is actually within this layer, 
(s/l interface); the second term of the r.h.s. of Eq. (5) presents 
the amount of solute which passed across the s/l interface and 
entered inside the crystal. Eq. (5) has been written, however, with 
some simplifications analogous to those, known in the Brody & 
Flemings theory, [9]. It causes mass balance in the solid-liquid 
system to not be yet satisfied. Eq. (5) determines increase of 
solute, which is passing from the liquid to the solid, only while 
considering the increment, dx. 
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 Taking into account that average thickening rate, vp, per-
pendicular to the direction of crystal growth, is vp = R/t f, the 
definition of the α – back-diffusion parameter, Eq. (4), can be 
separated from Eq. (5) because DS / (Rvp) = DS t f

 / R2 = α. Hence, 
Eq. (5) can be rewritten as follows: d (xN

–
S (x;α)) = NS (x;α) dx 

+ αxdNS (x;α). The assumed conservation of solute within the 
solid-liquid system is expressed in function of an average solute 
content within the solid: d ((1 – x) NL(x;α)) + d (xN–S (x;α)) = 0. 
Finally, the studied formula becomes:

 
; ; 1 ;

;

L S L

S

N x N x dx x dN x

x dN x
 (6)

Eq. (6) should be rewritten adequately to the current 
description which takes into account both the back-diffusion 
phenomenon and applicability of Eq. (1). 

 
1 ; 1 ;

;

L L

L

k N x dx x dN x

k x dN x
 (7)

It can be easily deduced from Eq. (7), that the definition of 
the back-diffusion parameter satisfies the following limitation: 
0 ≤ α ≤ 1, [22,23].

The solution to Eq. (7) is obtained while applying the 
condition: N L(0;α) = N0. 

 
1

1
0; 1 ; 0,

k
L k

KN x N kx x x x  (8)

Contrary to the analogous equations delivered in approaches 
[9-21], Eq. (8) is reducible to the Lever Rule, Eq. (3) while apply-
ing α = 1 and Eq. (8) reduces to Eq. (2), with α = 0, as expected. 

The s/l interface path results from Eq. (8): ;SN x
1

1
0 1

k
kk N kx x . However, the redistribution path is to 

be formulated by a new relationship, [8,24]: 

0 0 0; , ; , ;B ex in LN x X k x X X N x ,

 x  [0, X 0], X 0  [0,xK] 
(9) 

 0 0 0 0; 1 / 1ex x X k k X x k X X  (9a)

which yields from the condition: N S(x;1) + βex(x;X 0)β in(X 0;1)
NL(x;1) = NS(X 0;1) 
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which yields from the mass balance: 
0

0

0

; ,
X

BN x X dx
0 0

01 ; 1LX N X N

The equilibrium solidification (NK (α, N0) = N L(1,α) = 
N0 /k)) results in: 

 (αk)(k–1) /(1–αk) = 1/k (10)

Eq. (10) yields α = 1, as expected. Exceptionally, NK(α,N0) 
= NL(1,αE) = NE. In this case, xK = 1 and no precipitates are ob-
served. It gives: (αE k)(k–1)/(1– αE k) = NE /N0. It can be shown that: 
αE (N0) = 1 when N0 = k NE. Generally, αE (N0) ≤ 1 when xK ≤ 1 
with 0 < N0 ≤ NE. However, αE (N0) = 1 when N L (1;1) ≥ NE. 

4. Effect of the back-diffusion upon precipitates 
appearance 

Micro-segregation is usually accompanied by precipitates. 
However, a/ there are not precipitates when: α > αE (N0); b/ 
there are equilibrium precipitates, iE, only, when α = αE (N0), for 
kNE < N0 ≤ NE; c/ there are non-equilibrium precipitates, iD, only, 
when α < αE (N0), for 0 < N0 ≤ kNE; d/ there are non-equilibrium, 
iD, and equilibrium precipitates, iE, when α < αE (N0), for kNE 
≤ N0 ≤ NE.

In the case of solidification of the alloys from the eutectic 
phase diagrams, the solute concentrations in the last portion of 
the liquid before an appearance of precipitates are given:

     NK(α,N0) = NE,    0 ≤ α ≤ αE (N0) (11)

 NK(α,N0) = N L(1;α), αE (N0) < α ≤ 1 (12)

Final amount of the crystal can also be calculated:

 
1

10 0, 1/ 1 1 /
k

kK Ex N k N N ,
 (13a)

0 ≤ α ≤ αE (N0)

       xK(α,N0) = 1,      αE (N0) < α ≤ 1 (13b)

The total amount of precipitates, iK, is given as:

 iK(α,N0) = 1 – xK(α,N0) (14)

whereas, iE(N0) = iK(1,N0), and iD(α,N0) = iK(α,N0) – iE (N0); 
iE(NE) = 1; iE(kNE) = 0.

5. Concluding remarks

The current model for solute segregation/redistribution is 
coherent with the fundamental models for: a/ non-equilibrium 
solidification, [1,2], b/ equilibrium solidification (Lever Rule). 
First of all, however, the physical limitation for the α – back-
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diffusion parameter (Diffusional Fourier Number) is to be 
determined. Thus, the definition of the time required for ho-
mogenization, t d = R2/DS, is to be introduced into Eq. (4). Then, 
the mentioned definition becomes: α = t f/t d. The equilibrium 
solidification takes part when, t f = t d, and full homogeneity of 
a given crystal is obtained with, α = 1. On the other hand, α = 0, 
when no diffusion into the solid is assumed. 

Thus, when: a/ α = 0, then Eq. (7) reduces to the differential 
equation for micro-segregation formulated by Scheil, [1] and 
Krupkowski, [2], b/ α = 1, then Eq. (7) results in the description 
of the equilibrium solidification. Consequentially, for, α = 0, 
Eq. (8) reduces to Eq. (2), and to Eq. (3) for, α = 1. Addition-
ally, the redistribution path, Eq. (9) reduces to the s/l interface 
path, NB(x;X 0,0)  NS(x;0), when, α = 0, and to N0 = const, 
when, α = 1. 

The current model can be used for the estimation of the dif-
fusion coefficient due to the solute redistribution measurement 
and a fitting of the measurement points by Eq. (9). It requires 
to select a proper value of the α – Fourier Number, and results 
in estimation of the DS – parameter, [25]. 

The proposed description of the solute redistribution can 
also be applied to the assignment of the solidification path for 
ternary alloys, [26]. 

The current model is universal approach of solidification 
and is able to describe the rapid solidification experiments, [27], 
when, k  1, according to the Aziz’s concept, [28]. In this case, 
Eq. (8) changes its form into: N L (x;α) = N0 (solidification path). 
Consequentially, the s/l interface path is: N S(x;α) = kN L(x;α) = 
kN0 = N0, when, k = 1. It means that liquidus line is juxtaposed by 
solidus line, for, k = 1. Finally, the redistribution path is defined 
as: NB(x;X 0,α) ≡ NS(x;α) = N0. Therefore, the back-diffusion 
phenomenon is not forced to occur in this experiment or in an 
adequate technology.

The solute redistribution is the only parameter measurable 
by the EDS technique. The practical definition, applicable for 
the measurement of the solute redistribution is: NB(xj;x0j,α) = 
NB[( λ–j /L)w; ( L–oj /L

–)w,α]. All these parameters have already 
been well characterized, [24]. It should, however, be emphasized 
that the w – parameter depends on the geometry of solidifica-
tion. Thus, w = 1, when the plate-like morphology is formed 
(1D solidification); w = 2, when the columnar grains appear 
during oriented crystal growth (2D solidification), and w = 3, 
when the equiaxed grains are exclusive form of an alloy (3D 
solidification), Fig. 1. 
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