
1. Introduction

The perovskite structure materials have been used 
widely in a lot of fields of the modern technology. They 
are used as high density capacitors, actuators, pyroelectric 
detectors and piezoelectric transducers [1]. The PFN – 
Pb(Fe0.5Nb0.5)O3  ceramics also belongs to the group of 
perovskite type materials, in which ions Fe3+ and Nb5+ are 
arranged in the octahedral positions at random [2]. This 
ferroelectromagnetic material is characterized by magnetic 
ordering and spontaneous electric polarization taking place 
simultaneously [3]. At the temperature of about 358-383 K 
during heating cycle, there is a phase transition from the 
rhombohedral ferroelectric phase to the cubic paraelectric 
phase [4]. The magnetic Neel temperature is reported to be 
149 K [5]. In this material the electric order is caused by shift 
of Pb on A side and Nb on B side in one direction and the shift 
of O at the corner of the octahedral in the opposite direction. 
Fe has a natural magnetic moment. Fe-O-Fe connecting line 
forms a 180° angle, with provides an optimum condition to 
the existence of magnetic ordering [6].

In the recent years there has been an increase in the 
interest in this material and its specific ferroelectromagnetic 
properties. A detailed insight into relationships between the 
chemical composition, the crystalline structure, the electro-
physical properties and the domain structure enables to obtain 
the ceramics with better and better properties, which are 
necessary to be used in the modern technology. It is necessary 
to conduct intensive investigations dealing with factors 
influencing properties of this material. A change of the base 
chemical composition of the PFN ceramics by incorporating 
admixtures is one of those factors. A lot of admixtures both 
soft and hard ones can be added into the PFN ceramics [7-8]. 

In the non-admixed PFN ceramics there are deficiencies 
of oxygen formed during processing (PbO evaporation, during 
sintering at high temperatures) which generate the oxygen 
vacancies [9]. In a case of admixing the PFN ceramics with 
chromium, the Cr3+ ion will replace the Nb5+ niobium ion in 
sublattice B (WDB < WB) or replace the Fe3+iron ion as a result 
of isovalence admixing (WDB = WB). In the first case the 
admixing Cr3+ chromium ion in PFN constitutes acceptors. 
Such admixing will generate the p-type conduction, what 
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W pracy przedstawiono wpływ domieszki chromu (dla x = 0,01 – 0,06) na właściwości mechaniczne ceramiki PFn. 
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decreases electric conductivity of ceramics [8]. There is also 
a possibility here for the excess of the chromium admixture to 
be placed in the interstitial positions, what results in formation 
of donor centers generating additional electrons. It is possible 
because the chromium on the valence orbit has a single weakly 
bound electron. These additional electric charges will be 
placed in the interstitial areas causing a decrease in effective 
resistance of the grain boundaries. In this case conductivity of 
the PFN type ceramics may increase [8].

An internal friction method is often used in the 
mechanical properties testing. This method enables to obtain 
information about the material behavior at an atom level by 
observing macroscopic vibrations of a specimen. This method 
is applied widely in the ceramic materials testing due to its 
high sensitivity to changes in the point defect concentration, 
an interaction between the defects and changes in the real 
structure [10-12].

An aim of this work was to determine an influence of an 
admixture, the chromium, on the PFN ceramics mechanical 
properties.

2. Material tested and experiment

The properties of PFN-type ceramics depend on 
a structure formed during a synthesis. While synthesizing 
a pyrochlore phase is formed besides the perovskite and its 
presence decreases the PFN ceramics properties. A two-stage 
columbite method was selected as a production method to limit 
the pyrochlore phase formation [13]. The Pb(Fe0.5-xCrxNb0.5)O3 
ceramics (PFCN) was obtained from simple oxides PbO, Fe2O3, 
Nb2O5, Cr2O3. The first stage of the production was based on 
obtaining the FeNbO4 from the Fe2O3 and Nb2O5 oxides [14]. At 
this stage an admixture in a form the Cr2O3 chromium oxide (x 
from 0.01 to 0.06) was added to the solution. The oxides were 
milled for 10 hours, and the powder obtained was synthesized 
at 1173 K for 2 hours. The second stage was based on adding 
the PbO lead oxide into the doped FeNbO4 (5.0 % allowance of 
PbO was taken into account to level the lead evaporation). The 
powders were milled (10 h) and next synthesized at 1073 K / 
2 h. The ceramic samples were made by the free sintering (FS) 
in the following conditions: temperature sintering Ts = 1398 K 
and time sintering ts = 2 h. On the surface of the samples was 
applied silver electrode by burning method. 

The internal friction Q-1(T) and resonance frequency 
f longitudinal vibration of the sample were measured with 
a resonance mechanical spectrometer of the RAK-3 type 
controlled by a computer. The values of the Young’s modulus 
E were calculated on the ground of the measurements of 
resonance frequency f vibration of the sample, conducted 
simultaneously with the internal friction measurements, using 
with dependence (1):

(1)

where: lr, h, b and md – respectively: length, thickness, width 
and mass of vibrate part of sample.

The testing set of the RAK-3 type mechanical 
spectrometer is built with two chambers: the testing chamber 

and the cooling chamber. The testing chamber is put into 
the cooling one. The ceramic specimen tested is mounted 
in the holder, which is put into the testing chamber. Before 
starting the measurements air is removed from the chamber 
by a rotary vacuum pump (the vacuum obtained is about 10 
Pa). The specimen in question placed in the holder is between 
two electrodes: exciting (Ew) and registering (Er). Voltages U1 
and U2 of the value from 0 – 2 kV are constantly applied to 
the electrodes from a high voltage power unit. Additionally, 
a.c. voltage, which results in mechanical vibrations of the 
specimen, is applied to the exciting electrode from a generator. 
Work of a resonance mechanical spectrometer is controlled 
by an appropriate computer program. This program by co-
operating with a set of appropriate DAC transducers analyzes 
signals coming from the testing chamber. Then, it changes 
those calculating values of the internal friction at the given 
temperature [15].

In the case of the Q-1 values the error is assumed to be at 
a level of 2.0 %, whereas in the case of the f values, the error is 
1.0 %. The temperature is determined with accuracy of about 
0.5 K.

3. Results and discussion

Measurement results of the internal friction Q-1(T) and 
the dynamic Young’s modulus E(T) are presented in Fig.1. 
The measurements were performed at frequency f = 760 Hz 
(heating rate of 3.0 K/min) for the non-admixed PFN ceramics.

There is one maximum on the Q-1 = f(T) relationship at the 
temperature range 360–385 K (PF). This maximum is related 
to phase transition from the rhombohedral ferroelectric phase 
to the cubic paraelectric phase [16]. In the temperature range 
of the maximum presence on the Q-1(T) curve, anomalies from 
normal are also observed on the E = f(T) relationship - gradual 
increase in the value observed from the Af1 point minimum. 
The phase transition taking place in the given temperature 
range is also confirmed by the performed measurements of 
the temperature relationship of electric permittivity. For the 
undoped PFN ceramics a clear wide peak was observed on 
the ε(T) relationship in the temperature range of 350 - 450 
K [16].

 

Fig.1. Temperature relationships of the Q-1(T) internal friction 
and the E(T) dynamic Young’s modulus for the non-admixed PFN 
ceramics (f = 760 Hz)



1775

Temperature relationships of the internal friction obtained 
for the PFCN type ceramics admixed with the chromium 
are presented in Fig.2. The Q-1(T) relationships obtained 
for the ceramics with x = 0.01, 0.03 and 0.05 are presented 
for the comparison. Values of the internal friction at a room 
temperature , a temperature  of the PF friction peak at 
its highest point, as well as values  for the PFCN type 
ceramics are shown in Table 1.

Fig.2. Temperature relationships of the Q-1(T) internal friction and 
the E(T) dynamic Young’s modulus of the admixed PFCN ceramics 
for x = 0.01, 0.03 and 0.05 (f = 753 Hz).

Analyzing the data presented in Table 1 and in Fig.2 it 
can be stated that an increase in the chromium content in the 
PCFN ceramics results in the internal friction background 
decrease. The observed relationship between the chromium 
admixture concentration increase and the internal friction 
value is identical as relationships observed for other 
ceramics doped with hard admixtures. The admixture 
concentration increase leads to lowering of the maximum 
PF height. A displacement of the PF peak maximum towards 
higher temperatures is also observed with the chromium 
concentration increase and the temperature range increase 
from the ferroelectric to the paraelectric phase transition. 
The chromium concentration increase is also responsible 
for the phenomenon observed. An increasing number of the 
admixture atoms can cause an increase in a number of new 
phase nuclei. Analyzing the Q-1(T) values obtained for PFCN 
with x = 0.06 we can see the further decrease in the internal 
friction value at a room temperature , lowering of the 
PF peak height  and a slight displacement towards 
higher temperatures (TOF). On the E(T) relationships minima 
corresponding to them are observed. The ferroelectric 
to paraelectric phase transition is responsible for the PF 
maximum formation as for other compositions in question, 
including the non-admixed PFN ceramics (Fig.1). Referring 
to the earlier works authors proved that such of the maximum 
Q-1(T) in the areas of phase transitions was mainly connected 
with phenomena described by the Delorme and Gobin 
model [17]. The relative changes of the volume undergoing 
to phase transition are shown in this model. These changes 
are the function of the heating and cooling processes. Thus 
the following formula was derived:

(2)

where: K – material constant, G – shear modulus, ω - frequency 

of the sample vibrations, ω = 2pfr (fr – resonance frequency), 

 - the volume of substance undergoing the phase transition 

in unit temperature change,  - the rate of the temperature 

changes (during heating or cooling processes).
Height of the internal friction peaks connected with 

the phase transition is directly proportional to rate of the 
temperature changes and inversely proportional to resonance 
frequency changes, what was introduced in the formula 2.

TABLE 1
Specification of characteristic mechanical parameters and 

a temperature of the internal friction maximum presence for the 
PFCN type samples.

x   

0 0.0350 ± 0.0007 0.0241 ± 0.0005 370 ± 0.5
0.01 0.0362 ± 0.0007 0.0227 ± 0.0004 412 ± 0.5
0.02 0.0286 ± 0.0006 0.0193 ± 0.0004 419 ± 0.5
0.03 0.0242 ± 0.0005 0.0177 ± 0.0004 423 ± 0.5
0.04 0.0240 ± 0.0005 0.0165 ± 0.0003 425 ± 0.5
0.05 0.0238 ± 0.0005 0.0146 ± 0.0003 433 ± 0.5
0.06 0.0237 ± 0.0005 0.0129 ± 0.0002 440 ± 0.5

4. Conclusions

Specimens of multiferroic ceramics Pb(Fe0.5Nb0.5)O3 
and of the admixed with the chromium Pb(Fe0.5-xCrxNb0.5)O3 
ceramics, were prepared for the test needs. Analyzing the data 
presented in the work it can be stated that an increase in the 
chromium content in the PCFN ceramics results in the internal 
friction background decrease. It is identical as relationships 
observed for other ceramics doped with hard admixtures. 
A displacement of the PF peak maximum towards higher 
temperatures is also observed with the chromium concentration 
increase and the temperature range increase of the transition 
from the ferroelectric to the paraelectric phase.
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