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COMPARATIVE STUDY ON DIFFERENT CNN ARCHITECTURES DEVELOPED ON MICROSTRUCTURAL
CLASSIFICATION IN Al-Si ALLOYS

Recent advances in artificial intelligence have opened up new avenues for microstructure characterization, notably in metal-
lic materials. Physical and mechanical properties generally depend on the microstructure of the metallic material. On the other
hand, microstructural characterization takes time and calls for specific techniques that don’t always lead to conclusive results
quickly. To address this issue, this research focuses on the application of artificial intelligence approaches to microstructural
categorization. We demonstrate the advantages of the Al approach using an example of Al-Si alloy, a material that is widely
employed in a variety of industries. To specify a suitable convolutional neural network (CNN) approach for the microstructural
classification of the Al-Si alloy, CNN models were trained and compared using DenseNet201, Inception v3, InceptionResNetV2,
ResNet152V2, VGG16, and Xception architectures. Resulting from the comparison, it was determined that the developed super-
vised transfer learning model can execute the microstructural classification of Al-Si alloy microstructural images. This paper is
an attempt to advance methods of microstructure recognition/classification/characterization by using Deep Learning approaches.
The significance of the established model is demonstrated and its accordance with the literature data. Also, necessity is shown
of developing material models and optimization through systematic microstructural investigation, production conditions, and

material attributes.

Keywords: Attificial intelligence; Microstructural characterization; Al-Si alloy; Convolutional neural network (CNN);

Material classification

1. Introduction

Microscopic studies play a significant role in material
quality control. The most complicated mechanism is micro-
structural characterization and classification. Both qualitative
and quantitative microstructural characteristics are needed. Out
of these two characteristics, the qualitative one is fundamental,
as for qualitative one needs to know the type of microstructure
to select proper quantitative characteristics [1]. For example,
a number of phases can be determined in qualitative analysis,
and subsequently, volume fractions of these phases can be
determined. The person who interprets microstructural studies
has to have the necessary training and expertise [2]. It should
be noted that qualitative analysis of images of microstructure
is generally very challenging. This is so for several reasons.
First, there are large numbers of engineering metals, polymers,
ceramics, and their compositions. Second, there is a considerable
degree of variation in the size/shape of the feature, the typical

type of a given type of microstructure. Thirdly, 3-D structures
are typically transformed into 2-D images through projection.
In this situation, qualitative analysis is very much subjective and
a correct description of the type of microstructural features can
be performed effectively by a well-trained specialist. Each type
of' material has distinct microstructural features, like crystallites,
grains, phases, and reinforcements. Image-based artificial intel-
ligence research has long been a popular issue in the medical
business. Yet, this area is only beginning to acquire traction in the
realm of engineered materials research. Artificial intelligence and
image processing studies of microstructure characterization and
classification in the field of materials have gained attention in the
literature as a result of data science and information technology
advancements, as well as the significance of the topic [3]. The
integration of computer vision and machine learning techniques
has led to remarkable outcomes in the automatic recognition of
dendritic microstructures within micrographs. This achievement
has been marked by its impressive accuracy and holds promise
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for diverse applications in material characterization [4]. These
advancements involve the encoding of microstructural image
data through the utilization of features or convolutional neural
networks (CNNs). As a result, machine learning algorithms
leverage this densely encoded data, revealing complex material
correlations in the process [5].

The popularity of artificial intelligence techniques and
tools in academia and industry has just begun at the beginning
of the 21st century. The starting point of this popularity is based
on people fully discovering the benefits of machine learning to
solve problems. This popularity has continued to accelerate with
the development of deep learning in the last decade. With the
use of deep learning and image processing methods together,
the use of images as datasets in artificial intelligence applica-
tions has become widespread. Many studies are conducted in
academia on the creation of diagnosis and treatment approaches,
particularly in the medical context. Research on this topic in
the realm of material engineering is gaining traction. Material
informatics necessitates the utilization of data-driven methods
for microstructure identification [6]. Researchers proved the
use of computer vision in materials science, including machine
learning for microstructure recognition [7,8]. For example,
Chowdhury et al. [9] used computer vision and algorithms such
as support vector machine (SVM), random forest, and deep neu-
ral network to classify dendritic microstructures. Most studies
in the literature have utilized statistics-based machine learning
models. While these models have demonstrated success, they
might not be suitable for multi-class classification in big data
collection. In such cases, convolutional neural network (CNN)
models have promised relatively outstanding accuracy from a
perspective [10,11].

From this end, solid evidence in recent literature sug-
gests the capability to reconstruct microstructures using data-
driven approaches. For example, [12,13] used image process-
ing techniques and deep learning to classify with reasonable
accuracy, while Shen et al. [14] used deep learning to classify
martensite/ferrite phases and their fraction. Additionally, Feng
et al. [15] proposed a deep learning framework to characterize
the microstructure of metals by supporting the periodic data
table knowledge and, therefore, enabled to obtaining of more
characteristic information from microstructure images.

Architectures such as, VGG16 [16], Xception [17],
Resnet152 and InceptionResNetV2 [18], InceptionV3 [19], and
DenseNet201 [20] are used in computer vision applications. In
the present study, microstructural phase structures of Al-Si alloy
datasets with various architectures were generated using a pre-
trained CNN model. This was accomplished by analyzing the
literature and subsequently classifying the microstructural phase
structures of Al-Si alloys. The best model by comparing different
architectures and using data preparation, training, categorization,
and assessment. The models were trained over the dataset using
image augmentation techniques and were assessed by using an
independent test set. The results were analyzed using a heatmap
of the confusion matrix.

2. Materials and methods

The specifics of Keras-based CNN pre-trained architectures
used for the categorization of general phase structures of Al-Si
alloys obtained as part of the study are discussed in this section.
The entire operation is broken down into four fundamental parts.
Data preparation, data training, data categorization, and data
assessment are the phases involved.

2.1. Dataset preparation

In the scope of the investigation, a dataset with equal
amounts for three classes was created. The dataset for the hy-
poeutectic Al-Si alloy mostly consisted of microstructure pictures
collected from laboratory tests done as part of our research and
microscopic photos taken from the literature [21-24].

Microstructure pictures for the hypereutectic Al-Si alloy
were created using references from the literature [23,25-31],
whereas microstructure photos for the eutectic Al-Si alloy were
created using references from the literature [21,28,32-35]. Im-
ages were collected and resized as 180x180 pixels. Images were
taken regardless of magnification in order for the model to be
applicable to all microscope objectives. Three different datasets
were prepared for this study as learning, validation, and test. The
number of 380 resized images of the learning dataset, 79 resized
images of the validation dataset, and 300 resized images of the
test dataset were used in this current study. It is important to
note that the selected images were entirely utilized to identify
the type of microstructure. Consequently, the provided dataset
does not encompass the entire range of microstructure properties
at an identical scale.

2.2. Model architecture

The comparison of VGG16, Xception, Resnet152, Incep-
tionV3, InceptionResNetV2, and DenseNet201 CNN architec-
tures for the classification of general microstructural phases of
Al-Si alloys is a focal point in this study. These selected models
were built on the Keras library with a TensorFlow backend.
These architectures were used as pre-trained models. Models
were initialized with the pre-trained weights, and we built
a custom classification head on top of the standard model to
fine-tune the network for unique goal of this study. The clas-
sification head was made up of a single fully connected layer
with 64 neurons, activated using Rectified Linear Unit (ReLU)
activation, followed by a dropout layer with a rate of 0.5. The
final output layer is composed of three neurons representing
our three classes, and softmax activation is utilized to distribute
probability between them.



2.3. Data training

The construction of CNNs was carried out over the dataset.
The models in the current study were compiled with a cat-
egorical cross-entropy loss function and Adam optimizer. The
models were trained using the “fit generator” function for 50
epochs, with a batch size of 16. Early stopping were applied
with a patience of 5 epochs to prevent overfitting. Also image
augmentation method was used to supply more amount of data
for the CNN architectures to create the more productive deep
neural network models [36]. In the image augmentation ap-
proach, two non-random procedures were used: rescaling, which
included dividing the pixel values by 255 to scale them in the
range from 0 and 1, and fill mode, which involved filling the
pixels in the newly produced regions after the picture was al-
tered. Shear, zoom, horizontal and vertical flip, width and height

565

shift, and brightness were also employed at random. Selection
of the CNN architectures was carried out depend on the image
size used in this study. CNNs models requires a large number
of data to train the tasks successively. Because of that reason
ImageNet was used to train a pre-trained models. ImageNet,
with over 20.000 categories, was leveraged as a source of pre-
trained models to increase model performance and training time.
The general training structure scheme of the prepared models
is given in Fig. 1.

2.4 Model evaluation
To assess the trained model’s performance, an independent

test set of 300 images that were not utilized for training or vali-
dation was employed. The test set was likewise supplemented
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Fig. 1. Training Structure Scheme
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Fig. 2. General microstructural views of a) Eutectic Al-Si alloy [35]; b) Hypoeutectic Al-Si alloy [24]; and ¢) Hypereutectlc Al-Si alloy [31]

using the same data augmentation techniques as the training set.
The trained model was used to predict the test set and compute
evaluation measures such as accuracy, precision, recall, F1-score,
AUC (area under curve) and confusion matrix. Precision, recall
and F1-score values were calculated from confusion matrices.
AUC was determined by using Scikit-Learn library. To visualize
the model’s classification performance, the confusion matrix was
presented as a heatmap.

3. Result and discussion
Al-Si microstructures fluctuate in the Al-Si alloy phase

diagram depending on the quantity of silicon and the cooling
rate. Al-Si microstructures are classified into three types based

on this microstructural change: eutectic, hypoeutectic, and
hypereutectic. Fig. 2a shows the eutectic Al-Si microstructure.

Approximately 12% in the eutectic Al-Si microstructure.
It is the structure that comprises 7 silicon, and in general, acicu-
lar silicon is disseminated into the Al matrix. The silicon phase
might appear more regular or irregular depending on the cooling
rate of this structure. The silicon content of the hypo-eutectic
Al-Si microstructure (shown in Fig. 2b) is smaller than that of
the eutectic Al-Si microstructure. The Si phase is distributed
in the Al matrix and has a primarily round structure in this kind
of Al-Si alloy. Hypereutectic

Al-Si alloys are those that contain more water than eutectic
Al-Si alloys. The Si phase is insoluble in such alloys and accu-
mulates in the Al matrix. Because the Si content in the alloy is
high, the phase structure is commonly plate or acicular. Fig. 3b
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Fig. 3. Training and validation loss graphs for using a) Xception, b) VGG16, c) Resnet152V2, d) Resnet152V2, e) InceptionResNetV2,
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depicts the common microstructure of the hypereutectic Al-Si
morphology. The changes that may occur in the three different
morphologies mentioned are due to the additive elements that
can be added and the cooling rate. However, it is difficult to
compare these structures in different magnifications taken under
the microscope.

By providing those above-mentioned images, the training
validation and lost histories were plotted for each training models.
In Figs. 3a, 3b, 3c and 3e, that is, the models DenseNet201, Incep-
tion v3; InceptionResNetV2, VGG16, the training curves came
up the maximum point of training and validation loss. Figs. 3b
and 3c, Inception_v3 and InceptionResNetV2, are more identical.
In Fig. 3f the Xception model, the losses are in the decreasing
tendency. However, in Fig. 3d that is in ResNet152V2, overfitting
occurred in the given epoch. It was observed that ResNet152V2
was the model with the highest loss in both training and valida-
tion stages. However, it was seen that DenseNet201 presented
the lowest loss in the training and validation stages. Even so,
during training and validation, the Xception and DenseNet201
designs were shown to be somewhat overfitting.

The final training, validation and test accuracy values of
the models were plotted in Fig. 4. An accuracy score of 100%
means that the model correctly classified all items in the dataset.
In three steps, the DenseNet201 model with the lowest train-
ing and validation loss after 50 epochs was shown to have the
maximum efficiency outcomes. However, when the accuracy
values were considered, it was discovered that the validation loss
being greater than the training loss in the DenseNet201 model
had no detrimental effect. This suggests that this model may be
the best performing model overall. Depending on the test per-
formance, the models with the best performance were Inception-
ResNetV2 with 93.33% efficiency, ResNet152V2 with 93.33%
efficiency, Xception with 89.33% efficiency, VGG16 with
88.33% efficiency and InceptionV3 with 87% efficiency.

It is well recognized in the literature that as the depth of
the model connected to this circumstance develops, so does the
complexity, learning of small details, and performance [37].
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TABLE 1
The parameter number of prepared models
Model Name Total Parameters
Xception 96.363.051
VGG16 27.825.98
ResNet152V2 133.833.219
InceptionV3 55.361.315
InceptionResNetV2 79.506.659
DenseNet201 67.478.083

However, this is just one of several elements that influence model
performance, including hardware, data set, method, and hyper-
parameters [38]. The model requires more data as the number of
parameters rises. In this situation, a decline in model performance
is noticed. TABLE 1 shows the total parameter counts of the
models with various architectures developed for microstructural
categorization within the scope of the study. According to the
data shown in Fig. 4, the CNN model with VGG16 architecture,
which is the shallowest model with 27 million 825 thousand pa-
rameters, has the lowest performance. It was discovered that as
the number of parameters rose, so did the success of the models.
This performance was seen to decline in models with parameter
numbers larger than the parameter number of the top performing
DenseNet201 model.

Fig. 5 depicts the confusion matrices derived from the test
results, which were applied by picking 100 microstructural im-
ages from each class [39]. The vertical axes in the given matrices
represent the true label, while the horizontal axes represent the
predicted label. When the confusion matrix is examined, four
distinct outcomes are expected: true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). The number
of right predictions given by TP is the number of positive exam-
ples given by TP. FP, unlike TP, reports the number of positively
predicted but really negative examples. The number of predicted
true negatives is given by TN. The number of negative expected
but really positive examples is given by FN.
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Fig. 5. Confusion Matrix of using a) Xception, b) VGG16, ¢) Resnet152V2, d) InceptionV3, ¢) InceptionResNetV2 and f) DenseNet201 architectures

The confusion matrices in Fig. 5 show that all models have
aclass-based success rate of more than 80%. As the models were
tested separately, it was discovered that 17 out of 100 eutectic
samples were hypoeutectic, whereas 13 out of 100 hypereutectic
samples were eutectic in the model with VGG16 architecture.
The false predictions in this model were largely noticed in these
two situations, and while it predicted hypoeutectic samples with
high accuracy, it was unsuccessful to in the other two groups.
It should be highlighted that the same false predictions occur with
better outcomes in the ResNet152V2. Similarly, in this model,
as in VGG16, the Hypoeutectic class was successful, while the
other classes yielded lower outcomes than the Hypoeutectic.
Similarly, as like VGG16, the Hypoeutectic class performed
well, whereas the other classes performed poorly. While the
hypereutectic and hypoeutectic classes appear to be effective in
the InceptionResNet152V2 model, the eutectic class was found to
be less successful, with erroneous predictions in this class mainly
forecasted as hypoeutectic. False predictions were found to be

more homogenous but more numerous in the InceptionV3 and
Xception models. The DenseNet201 model, on the other hand,
had no incorrect predictions in the hypoeutectic class; also, when
the eutectic and hypereutectic classes were considered, it was
determined that this model made the most consistent predictions.

TABLE 2 is given to show the performance metrics of dif-
ferent machine learning models on a specific task. The metrics
were reported as precision, recall, F1-score, and (Area Under The
Curve) AUC score. The metrics of precision, recall and F1-score
were determined by using confusion matrices of CNN models.
Precision is defined as the ratio of estimated TP data to the total
of TP and FP data. Precision is particular to the projected outcome
from the test data. This metric represents how successfully the
model learned positive sample attributes. The higher the preci-
sion, the more accurate the forecast of the positive sample looks
to be. The recall is calculated as the ratio of the TP number to the
total of the TP and FN numbers. The greater the recall rate, the
better the prediction of the target sample and the lesser potential



of skipping a poor sample. The F1 score is calculated by averag-
ing the harmonic of precision and recall. In general, accuracy and
memory are at odds. As a result, the F1 score balances accuracy
and memory effects and gives a composite indicator to evaluate
the classifier more correctly [40]. AUC results were obtained
using the Scikit-Learn library.

Using the sensitivity, recall, and F1-score criteria, it was dis-
covered that the DenseNet201 model produced the outstanding
results, with 0.94. The VGG16 model was determined to be least
effective in the proper estimate of positive data, as evidenced
in the accuracy results. The value of 0.86 was calculated for the
VGG16 model in all three of the precision, recall and F1 scores.
The computed precision, recall, and F1-score outcomes of the
InceptionResNetV2 and InceptionV3 models were found to be
in the same order after the DenseNet201 model as the efficiency
performance order. The success order of the models employed
in the comparisons based on these three measures is nearly
identical to the accuracy findings. According to these data,
the only difference detected was that ResNet152V2 produced
substantially more sensitive results than the Xception model.
This circumstance revealed the opposite based on the accuracy
results. In the outcomes of the stated accuracy and other metrics,
however, there was no substantial difference in success between
these two models. Using the AUC scores, it was established that
the findings in this measure, like the results in other metrics,
were consistent with the results in other metrics and accuracy.

TABLE 2
The score evaluation with different score values

Model Name Precision Recall F1-Score AUC
Xception 0.89 0.89 0.88 0.97
VGGI16 0.86 0.86 0.86 0.94
Resnet152V2 0.89 0.89 0.89 0.96
InceptionV3 0.92 0.92 0.92 0.98
InceptionResNetV2 0.92 0.91 0.91 0.98
DenseNet201 0.94 0.94 0.94 0.98

4. Conclusion

In this work, a classification method on the microstructure
of Al-Si alloys was performed utilizing models created using
various CNN architectures. The classification in this study
focused on eutectic, hypoeutectic, and hypereutectic Al-Si mi-
crostructures, providing valuable insights into the characteriza-
tion of these samples. The CNN architectures employed were
compared based on the classification results. The microstructural
images used in this investigation were gathered from a variety
of sources. Data augmentation techniques were employed on
datasets to provide variations for improving the performance
of deep learning classification models. To achieve an appropri-
ate interpretation in the comparison of the architectures, loss
curves, accuracy values, precision, recall, F1-Score, and AUC
metrics were utilized. The InceptionV3, InceptionResNetV2, and
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DenseNet201 architectures, in particular, were deemed more suc-
cessful than other models, with an accuracy of more than 90%.
The DenseNet201 architecture was shown to be the most useful
classification model after considering all criteria, outperforming
the Xception, VGG16, ResNet152V2, InceptionV3, and Incep-
tionResNetV2 designs. Although it has promising findings as
the CNN model with DenseNet201 architecture, which has the
greatest predictive ability among the models constructed within
the scope of the study, the model requires more development in
order to better forecast class differences in future investigations.
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