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OPTIMIZATION OF FERRITE STAINLESS STEEL MECHANICAL PROPERTIES PREDICTION 
WITH ARTIFICIAL INTELLIGENCE ALGORITHMS

The article presents a computational model build with the use of artificial neural networks optimized by genetic algorithm. 
This model was used to research and prediction of the impact of chemical elements and heat treatment conditions on the mechanical 
properties of ferrite stainless steel. Optimization has allowed the development of artificial neural networks, which showed a better 
or comparable prediction result in comparison to un-optimized networks has reduced the number of input variables and has ac-
celerated the calculation speed. The introduced computational model can be applied in industry to reduce the manufacturing costs 
of materials. It can also simplify material selection when an engineer must properly choose the chemical elements and adequate 
plastic and/or heat treatment of stainless steels with required mechanical properties.
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1. Introduction

The development in material engineering has led to in-
creased competition on the market, also for corrosion-resistant 
steels. The properties of these materials strictly depend on their 
chemical composition and type of processing. Therefore, to 
obtain the required mechanical properties and a relatively low 
production cost, it is necessary, that the chemical composition, 
as well as the appropriate heat and mechanical treatment condi-
tions, should be selected following the client’s requirements. The 
classic approach, i.e. the execution of a series of experiments 
with the production of the necessary number of samples to deter-
mine the properties of each of these steel grades, is a breakneck 
undertaking requiring an extremely large time and financial 
expenditure. Artificial intelligence methods, together with data 
obtained through experiments, allow developing a model that 
will allow predicting the mechanical properties of stain ferritic 
steels in a very short time with high accuracy. The main purpose 
of making such a model is to reduce the costs associated with 
materials testing of these steels and faster access to the results 
of calculations. The use of artificial intelligence enables the ad-
vancement of stainless steel technology in multiple ways, even 
though only a small number of definition vectors are available 
[1-7]. In recent years, many scientists from around the world have 

dealt with the topic of the application of artificial intelligence 
algorithms in material engineering. Many computational models 
were created describing the relationships between phenomena 
occurring in steels, their properties, chemical composition and 
processing conditions. In order to decrease production expenses 
of products, introduced models can be obtained in manufactur-
ing industry. They can also simplify the selection of materials 
if the engineer has to correctly choose chemical elements and 
appropriate plastics and/or heat processing of stainless steels, 
having the necessary mechanical characteristics [8-17].

2. Materials and methods

Data for the construction of computation models for predict-
ing steel properties were obtained by laboratory testing certain 
grades of ferritic stainless steels following PN-EN 10088-1: 
2014. The main criterion for selecting steel grades was carbon 
concentration from 0.3 to 1.2%, chromium concentration from 
10 to 14% and nickel concentration from 0.1 to 2% together with 
other alloying elements [19-25]. Steel was smelted in electric arc 
furnaces equipped with vacuum arc degassing (VAD) devices. 
The material was delivered in the form of round rods after nor-
malization treatment at a specified temperature and time. From 
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metallurgical approvals, values were read that were used as input 
variables in the process of teaching artificial neural networks: 
chemical element concentration, temperature and time of nor-
malization treatment and rod diameter. Five mechanical proper-
ties were investigated: yield strength (Rp0.2), tensile strength 
(Rm), relative elongation (A), relative area reduction (Z) and 
hardness (HB) [26-29]. Values of these properties are output 
values for respective artificial neural network. Determination 
of strength properties consisted of carrying out a tensile test for 
steel samples following PN-EN 10002-1: 2002. Hardness tests 
were carried out using the Brinell method following PN-EN 
ISO 6506-1: 2002.

The results of laboratory tests were used to build a dataset 
with 3272 vectors. Input variables were: 
• chemical composition of steel including concentrations of 

the thirteen, most common in steels, elements: carbon (C), 
manganese (Mn), silicon (Si), phosphorus (P), sulfur (S), 
chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten 
(W), vanadium (V), titanium (Ti), copper (Cu) and alu-
minum (Al),

• three conditions of the normalization process, such as: the 
temperature to which the material was heated, the time of 
heating the material at this temperature, and the type of 
cooling medium in which the steel was cooled,

• diameter of the rod cross section. 
Material tests were conducted in such a way as to obtain 

an even distribution of values in the range of variability of the 
given input value without excessive data clusters or empty 
spaces. Data uniformity was confirmed using the histogram tool. 
These vectors were randomly divided into three sets. Teaching 
set with 1635 vectors and a validation set with 818 vectors was 
used in network learning processes. The remaining vectors were 
included in the test file and were used to check the correctness 
of the network operation. The process of assigning cases to 
individual sets was repeated many times. After each new draw, 
the process of teaching artificial neural networks was repeated 
several times to obtain the best regression statistics. Artificial 
neural networks with a multi-layer perceptron (MLP) architec-
ture with one or two hidden layers have been developed from 
such prepared data. Transfer functions in hidden and output 
layers were hyperbolic. The method of back error propagation 
and conjugate gradients were used for teaching. The back error 
propagation algorithm consists in changing the weight of the 
input signals of each neuron in each layer so that the error value 
for subsequent learning pairs contained in the learning set is as 
low as possible. For this purpose, the fastest gradient method 
is used. It is a generalization of the delta rule for perceptrons 

to multilayer feedforward neural networks. The conjugate gra-
dients algorithm is an advanced method of learning multilayer 
perceptrons. It is especially recommended for networks with 
a large number of weights (more than a few hundred) and / or 
for networks with many output neurons. The conjugate gradients 
algorithm cumulatively modifies the weights. This means that 
the weight modification is carried out once at the final stage of 
the implementation of one era. During the application of the 
conjugate gradient algorithm, the average value of the gradient 
is determined (relative to all cases) on the error surface, which 
is the basis for a one-time weight modification carried out in the 
final phase of each epoch [22,27-28]. In the validation process, 
a number of material vectors cases are included in a separate 
group. Data belonging to this separate group are not directly 
used during network learning, but they are used to carry out 
independent control of the learning algorithm’s progress. In each 
case, the initial network performance determined on the basis 
of the training and validation string is the same. It is obviously 
very poor because the network is unable to respond properly 
to any data prior to learning. During learning, the error made 
by the network decreases and, as long as the learning process 
minimizes the properly defined error function, the validation 
error also decreases. However, if the decrease in the validation 
error has stopped or this error is beginning to increase, it means 
that the network has started to adapt too much to the learning 
data and loses the ability to generalize the learning results. The 
final form of the network, taught using a learning set and veri-
fied using a validation set, is additionally tested using a test set. 
This additional check is practiced to make sure that the results 
obtained for the training set and validation set are consistent 
with reality, and are not just a mechanical product of the learn-
ing procedure. For the test set to fulfill this role correctly, it 
should be used only once [22,27-28]. The ranges of selected 
input variables are shown in Table 1. Separate networks were 
developed for each material property separate for two types of 
plastic treatment: free forging and rolling. The most important 
regression parameters that were used when selecting the neural 
network were average absolute error, standard deviations ratio 
and Pearson correlation.

The last step was to use a genetic algorithm to optimize 
the chosen artificial neural network. It consisted of creating 
the “mask” of variables to be used to model and examine the 
neural network’s error. By adding to each variable penalty unit, 
the number of inputs can be reduced, which can have a benefi-
cial effect on their regression statistics. The genetic algorithm 
parameters in each test were the same except for the penalty 
unit, which increased every time the algorithm was used. With 

TABLE 1
The range of selected input variable values

Chemical composition [mass %] Normalizing
C Mn Si Cr Ni Mo Cu Temp. [°C] Time [min]

Minimum 0.03 0.42 0.18 10.60 0.10 0 0 600 50
Maximum 0.94 1.57 0.43 20.00 2.41 2.70 0.71 980 360
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the amount of 200 generations, the algorithm population was 
200 individuals. Standard values for Holland’s classic genetic 
algorithm are the mutation probability of 0.1 and the crossover 
probability of 0.4. The sampling value was set to 0.3 to speed 
up modeling procedures. This reduced the search time five times 
from 10 minutes to about 2 minutes and allowed to increase 
the number of individuals in the population and the number of 
generations. Then artificial neural networks were built using 
genetic algorithm-suggested variables.

Besides, automatic neural networks developed using an 
automated designer was developed for comparative purposes. 
The use of this package simplifies network construction to the 
maximum. The user only needs to indicate the input and output 
variables. All important decisions in the learning process regard-
ing the architecture, the number of variables used or the learning 
methods are made by the software. All calculations were made in 
the Statistica package [30] on desktop computer with an i5-3450 
processor with 8GB Ram.

3. Results and discussion

Table 2 contains architecture, regression statistics for the 
test set, respectively, for the base neural networks, optimized by 
genetic algorithm and constructed automatically developed for 
steels after free forging. Table 3 presents architecture, regres-
sion statistics for artificial neural networks developed for rolled 
steels. Multi-layer perceptron architecture is described by three 
or four values, which are the number of input neurons, number 
of neurons in one or two hidden layers and single output neuron. 

For example, automated network used for hardness prediction 
of rolled steels is 12-6-1. This means 12 neurons in the input 
layer, 6 neurons in one hidden layer and 1 neuron in the output 
layer. The same network for forged steels has the architecture 
11-7-4-1, this means 11 neurons in the input layer, 7 neurons in 
the first hidden layer, 4 neurons in the second hidden layer and 
1 neuron in the output layer. Average absolute error E is the dif-
ference between the reference value and the value obtained at the 
output for the output variable. The correlation is determined by 
the standard Pearson R correlation coefficient for the set value 
and the value obtained at the output.

Figure 1 introduces a comparison of testing set mean ab-
solute error of base, optimized and automated artificial neural 
networks developed for steels after free forging. Figure 2 intro-
duces a comparison of testing set mean absolute error of artificial 
neural networks developed for rolled steels.

Figure 3 introduces a comparison of testing set Pearson 
correlation of base, optimized and automated artificial neural 
networks developed for steels after free forging. Figure 4 intro-
duces a comparison of testing set mean absolute error of artificial 
neural networks developed for rolled steels.

Regression statistics analysis of yield strength prediction 
Rp0,2 showed that the optimized network has the lowest average 
absolute error and the lowest deviation ratio. Pearson correlation 
also achieves peak value for these networks for both types of 
treatment reaching 0.98 for forged steel. In the case of tensile 
stress Rm, optimization did not give satisfactory results for 
rolled steels, just as an automated designer. The best regression 
statistics has the base artificial neural network. Much better 
results were achieved for forged steels. The optimized network 

TABLE 2

Regression parameters of artificial neural networks build for forged steels

Property

Non-optimized GA optimized Automated designer
MLP

architect-
ture

Average
absolute

error

Pearson
correla-

tion

MLP
architect-

ture

Average
absolute

error

Pearson
correla-

tion

MLP
architect-

ture

Average
absolute

error

Pearson
correla-

tion
Rp0,2 [MPa] 17-3-1 20.16 0.97 14-4-1 16.90 0.98 11-6-1 23.01 0.82
Rm [MPa] 17-10-1 18.50 0.96 8-5-1 18.50 0.94 11-7-1 17.61 0.94

A [%] 17-5-1 0.97 0.83 9-4-1 0.93 0.85 3-4-1 1.26 0.73
Z [%] 17-5-1 2.17 0.72 9-5-1 2.13 0.78 4-8-1 2.39 0.68
HB 17-5-1 13.03 0.61 4-8-1 10.21 0.69 11-7-4-1 11.48 0.68

TABLE 3

Regression parameters of artificial neural networks build for rolled steels

Property

Non-optimized GA optimized Automated designer
MLP

architect-
ture

Average
absolute

error

Pearson
correla-

tion

MLP
architect-

ture

Average
absolute

error

Pearson
correla-

tion

MLP
architect-

ture

Average
absolute

error

Pearson
correla-

tion
Rp0,2 [MPa] 17-3-4-1 20.69 0.86 13-8-1 17.65 0.89 12-4-1 19.45 0.86
Rm [MPa] 17-5-1 16.75 0.96 8-4-1 17.88 0.95 12-8-7-1 18.18 0.95

A [%] 17-4-1 3.77 0.70 7-1-1 3.52 0.75 15-9-1 3.58 0.71
Z [%] 17-7-1 4.71 0.74 9-7-1 4.06 0.84 12-5-1 4.59 0.82
HB 17-6-1 6.52 0.88 6-14-1 6.51 0.88 12-6-1 7.72 0.84
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has the smallest average absolute error, but the correlation is 
slightly lower than in the base network. For the relative elon-
gation A5 regression analysis shows that the smallest average 
absolute error has the optimized network, but the differences 
are small compared to other networks. Larger differences are 
in Pearson correlation, also in favor of the optimized network. 
A very similar situation occurs for the neural network optimized 
for the relative contraction Z. The optimized network has the 
best regression statistics for all sets, but the differences between 

the networks are insignificant. Slightly better than in the other 
networks is the Pearson correlation. Regression statistics for 
automated and optimized artificial neural networks build for 
prediction of Brinell hardness HB are very similar. Again op-
timized network has the Pearson correlation the highest along 
with the smallest mean average error for forged steel. For rolled 
steel regression statistics for the base and optimized artificial 
neural networks are identical. The automatic network has been 
left behind. 

Fig. 1. Comparison of mean absolute error for base, automatic designed 
and genetic optimized neural artificial networks (testing set), build for 
forged steels

Fig. 2. Comparison of mean absolute error for base, automatic designed 
and genetic optimized neural artificial networks (testing set), build for 
forged steels

Fig. 3. Comparison of Pearson correlation for base, automatic designed 
and genetic optimized artificial neural networks (testing set), build for 
rolled steels

Fig. 4. Comparison of Pearson correlation for base, automatic designed 
and genetic optimized artificial neural networks (testing set), build for 
rolled steels
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Summarizing, for all material property, optimization 
improved the mean absolute error, which is the smallest in op-
timized networks. Only in the case of Rm of rolled steels, dete-
rioration of regression statistics was obtained, but the difference 
in and in Pearson’s correlation is only 0.02 for the testing set. 
Only in the case of rolled steel hardness HB, the optimization 
did not change the regression statistics.

4. Conclusion

The objective of this study was to optimize the neural arti-
ficial networks after normalization treatment used to predict the 
mechanical properties of rolled and forged ferrite stainless steel 
and this objective has been reached. Artificial neural networks 
have been optimized to obtain better statistics on regression 
using the genetic algorithm. Optimization, except for rolled 
steel tensile strength Rm case, allowed the development of ar-
tificial neural networks, showing a better or comparable output 
in comparison to base networks, as well as a reduced input of 
variables. Modified artificial neural networks will allow the 
mechanical properties of the examined steels to be predicted 
more accurately and faster.
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