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PATTERN SELECTION IN THE EUTECTIC GROWTH – THERMODYNAMIC INTERPRETATION 

The (Zn) – single crystal strengthened by the E = (Zn) + Zn16Ti eutectic precipitate is subjected to directional growth by 
the Bridgman’s system and current analysis. Experimentally, the strengthening layers (stripes) are generated periodically in the 
(Zn) – single crystal as a result of the cyclical course of precipitation which accompanies the directional solidification. These layers 
evince diversified eutectic morphologies like irregular rods, regular lamellae, and regular rods. The L – shape rods of the Zn16Ti – in-
termetallic compound appear within the first range of the growth rates when the irregular eutectic structure is formed. Next, the 
branched rods transform into regular rods and subsequently the regular rods into regular lamellae transitions can be recorded. The 
regular lamellae exist only within a certain range of growth rates. Finally, the regular rods re-appear at some elevated growth rates. 

A new solution to the diffusion equation is provided to describe the micro-field of the solute concentration in the liquid adjacent 
to the front of the growing eutectic structure. The solution is based on the mass balance in the considered system. Moreover, the 
existence of the protrusion of the leading eutectic phase over the wetting one is required by the mass balance. The appearance of 
the d – protrusion in the growing eutectic is well confirmed by the experimental observations of the frozen solid/liquid interface. 
The mentioned solution satisfies the concept of the eutectic coupled growth according to which undercooling of the leading phase 
is less than undercooling of the wetting eutectic phase. Also, the Ti – solute micro-segregation / redistribution is analyzed within 
the matrix of the single crystal. The micro-segregation is described as a result of the solution to the adequate, newly developed 
differential equation. The definition for the solute redistribution is given by the subsequently / separately formulated relationship. 
This definition takes into account both extent -, and intensity of the solute redistribution. 

Finally, the entropy production is calculated for the regular lamellae -, and for the regular rods formation, respectively. The 
entropy production is a function of some parameters which define the eutectic phase diagram, coefficient of the diffusion in the 
liquid, and some capillary parameters connected with the mechanical equilibrium located at the triple point of the solid/liquid 
interface. Branches formation is related to the marginal stability. A new criterion is formulated and subjected to successful verifi-
cation. It is: in the structural – thermodynamic competition the winner is this kind of the pattern for which minimum entropy 
production has a lower value 

Keywords: Criterion of lower minimum entropy production,Structural competition,Marginal Stability, Irregular growth, 
Microsegregation

Notations

d – protrusion of the leading phase above the wetting phase, [m], 
D – coefficient of diffusion in the liquid, [m2/s],
k – partition ratio, [at.%/at.%], 
N – solute concentration, [at.%], 
NE – eutectic concentration of titanium, [at.%], 
N0 – nominal solute concentration in a given alloy, [at.%], 
rα – half the radius of the α – eutectic phase rod, [m],
rβ – sum of the half the radius of the α – eutectic phase rod and 

the width of the β eutectic phase (matrix), [m],
Sα – half the width of the α – eutectic phase lamella, [m],
Sβ – half the width of the β – eutectic phase lamella, [m],

t – time, [s], 
T – temperature, [K],
v – crystal growth rate, [m/s],
ε – amplitude of the s/l interface perturbation, [m], 
λSL – critical wavelength of perturbation generated at the s/l 

interface, [m], 

1. Introduction

The growth of the (Zn) single crystal strengthened by the 
E = (Zn) + Zn16Ti precipitate was performed by the Bridgman’s 
system. Experimentally, the strengthening layers (stripes) are 

1 INSTITUTE OF METALLURGY AND MATERIALS SCIENCE, POLISH ACADEMY OF SCIENCES, 30-059 KRAKÓW, 25 REYMONTA STR., POLAND

* Corresponding author: w.wolczynski@imim.pl



654

generated periodically in the (Zn) – single crystal as a result 
of the cyclical course of precipitation which accompanies the 
directional solidification. These layers evince diversified eu-
tectic morphologies like irregular rods, regular lamellae, and 
regular rods. Transformations of the mentioned structures (one 
into other) were observed at some threshold growth rates. It is 
obvious that the eutectic structures formation is subjected to 
the competition.

Thus, it is postulated that the thermodynamics of ir-
reversible processes is able to explain / justify the structural 
transformations. For that reason, a new criterion is formulated 
to describe eutectic morphologies competition which results in 
the appearance of the wining structure. 

The criterion is: in the structural – thermodynamic compe-
tition the winner is this kind of the pattern for which minimum 
entropy production is lower. 

An application of such a criterion requires to calculate the 
entropy production per unit time for both eutectic regular struc-
tures: lamellar structure and rod-like structure. Subsequently, 
the entropy production is to be subjected to minimization in 
order to formulate the so-called Growth Law for considered 
structures.

The (Zn) – single crystal growth proceeds in a stationary 
state in the Bridgman’s system with constant both the v – growth 
rate and G = ∂T /∂z – thermal gradient. Thus, the application of 
the theorem of minimum entropy production can be assumed in 
this situation. 

After some rearrangements and in a general form, [1,2], 
entropy production per unit time and unit volume associated 
with the mass transfer only is given as follows:

 g
D i s l

i i

DR
grad N T T const

N N
 (1)

Rg is the gas constant, ψ – thermodynamic factor, and Ts/l – 
temperature of the solid / liquid interface.

Eq. (1) is ready to be introduced into Eq. (2) in order to 
calculate entropy production per unit time, separately for lamel-
lar -, and rod-like eutectic structure formation within the layers 
strengthening the (Zn) – single crystal.

 D DV
P dV  (2)

The current description is connected with the mass transfer 
in the liquid adjacent to the s/l interface but contained in the dif-
fusion zone: zD ≈ D/v (in the z – direction). Entropy production 
associated with the heat transfer is neglected, (σT = 0). 

The V – volume is the key parameter for the subsequent 
calculation / solution of the integral, Eq. (2). It leads to the 
separation of integration which now, will be made simultane-
ously for the lamellar -, and rod-like structure formation. The 
V – volume has already been defined for the lamellar -, and the 
rod-like structure formation, [2].

The V – volume is reproduced periodically in the regular 
eutectic morphology. However, this volume is not the same for 
every new solidification rate. Therefore, the average entropy 
production is to be calculated, [2]: 

a) for the lamellar eutectic growth

 
L
D DV

P dV
S S

 (3a)

b) for the rod-like eutectic growth

 
R
D DV

P dV
r r

 (3b)

Next, Eq. (4) is obtained by introducing Eq. (1) into Eq. (2):

 g
D iV

i i

DR
P grad N dV

N N
 (4)

According to the thermodynamics of irreversible processes, 
the stationary state is defined by the criterion of minimum entropy 
production, [3]. Thus, the application of this criterion allows for 
defining the size of the regular eutectic structure. 

The eutectic transformation proceeds under the stationary 
state in such a way that the regular lamellae / rods, growing 
at an imposed thermal gradient and a constant solidification 
rate, evince inter-phase spacing (λ , R) which corresponds to 
the minimum entropy production.

Therefore, the mathematical optimization of the regular 
morphology formation described by the entropy production leads 
to the formulation of the so-called Growth Law for lamellar or 
rod-like structure, respectively, [4]. 

Additionally, application of the concept of marginal stabil-
ity, [5], to define the operating range for the irregular eutectic 
structure formation will be shown in the next chapter. 

Moreover, descriptions of both irregular – into regular 
structure transformation (debranching), and regular rod-like -, 
into regular lamellar structure transformation will be delivered.

Finally, examination of the newly developed theory for the 
solute micro-field formation with the verification of the local 
mass balance which allows to display the leading phase protru-
sion will be performed.

The entropy production per unit time and unit volume, Eq. 
(1), has been determined for the isothermal s/l interface. The 
geometry of this isothermal interface should be bound with the 
shape of the transition layer, [6,7]. 

Finally, calculation of the entropy production per unit time, 
Eq. (4), was performed for the 0 ≤ z ≤ zD – boundary layer, 
where, zD ≈ D/v, [4]. 

Calculation of the entropy production per unit time, Eq. (4), 
is currently limited to the entropy production associated with the 
mass transfer only. It is self-explanatory because heat transfer 
runs very quickly in comparison with the mass transfer. Thus, 
contribution of the heat transfer to the entropy production is 
negligible, [8]. 

2. Irregular eutectic growth

Irregular eutectic growth has been observed in the strength-
ening layer of the (Zn) – single crystal for the 0 < v ≤ v1 – growth 
rates range, [2]. Certain models for irregular eutectic structure 
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formation are based on the diffusion in the liquid and the s/l 
interface undercooling, [9], and [10]. 

The current model shows the possibility to adapt two ther-
modynamic conditions to the description of irregular structure 
growth. It is justified because two extremely different types of 
morphology can be selected. First, the eutectic structure with 
the maximum perturbation of the non-faceted phase interface 
could be distinguished. Second, the regular eutectic structure 
(in some areas well visible within generally irregular morphol-
ogy) would also be exposed. The first structure is associated 
with state of marginal stability, while the second one refers to 
stationary state, Fig. 1. 

Fig. 1. Model for the irregular eutectic structure formation; distin-
guished: the ms – marginal stability, and the ss – stationary state; 
the dex – excess protrusion (referred to the appearance of the δTK – ki-
netic undercooling of the s/l interface of the faceted, leading phase; 
α – faceted eutectic phase, β – non-faceted eutectic phase; dashed line 
– former state of the marginal stability state 

It is assumed in the current model that the structure for-
mation oscillates between the stationary state and the marginal 
stability, Fig. 1. Thereby, this oscillation phenomenon evokes 
the existence of a whole spectrum of the interphase spacing. 
So the appearance of the spacing spectrum occurs within the 
operating range of the growth rates, although the growth rate 
(crucible displacement rate imposed on the Bridgman’s system) is 
constant during the experiment under investigation. The areas of 
the regular structure are formed with the same rate as the crucible 
displacement rate, but the branched structure is growing with 
the less intense rate. Thus, an average spacing can be subjected 
to the structural analysis within the supposed operating range. 

The scheme shown in Fig. 1 was primarily designed for 
one of the first models for the irregular structure growth, [9]. 
Usually, the so-called operating range was associated with the 
geometry of the perturbed interface of the faceted phase, [10]. 
Yet, some experimental observations of the frozen s/l interface 
do not confirm the existence of this perturbation, [11]. For this 
reason, the existence of this perturbation has been removed from 
the current model / scheme, whereas regular and excess protru-
sions of the leading, faceted phase have been introduced, Fig. 1. 

In the analyzed irregular eutectic growth, some fluctuations 
of the solute concentration are connected with the phenomenon 
of branching and resultant perturbation of the real solute con-
centration field, δ(δN L(x, z)), and δ(δN L(r, z)), respectively. The 
fluctuation / perturbation occurs in the direct neighborhood of 
the stationary state, Fig. 1. This fluctuation gives rise to the ap-
pearance of the so-called excess entropy production. 

In these areas (branching regions) of the irregular eutectic 
morphology formation, the system rotates around the stationary 
state which is essentially associated with the regular structure 
which forms locally at the minimum entropy production. 

In the current model, a marginal stability is assumed to 
control the maximum fluctuation of the solute concentration 
field and resultant maximum perturbation of the s /l interface 
shape. Both states (stationary state and marginal stability) are 
selected in the generally irregular structure, Fig. 1. At the mar-
ginal state, corresponding to the transition between stability 
and instability, the excess entropy production vanishes, [5], and 
the mentioned perturbations do not develop. The wavelength 
of the considered perturbation is assumed to be equal to the 
λSL – wavelength, Fig. 2. 

Fig. 2. Interface’s tendency to instability (rate of perturbation propaga-
tion) versus the λp – wavelength of the perturbation, shown schematically 
according to the stability / instability theory, [12], which is adapted for 
the description of branching, [13] 

The λSL – wavelength introduced into the scheme, Fig. 1, 
is defined as follows:

 SL Cm G G  (5)

with, Γβ – the Gibbs-Thompson’s parameter for the β – non-
faceted phase, GC – solute concentration gradient at the s /l 
interface of the β – non-faceted phase, G – thermal gradient at 
the s/l interface of the β – non-faceted phase, [13]. 

The structural analysis of the strengthening layer situated in 
the (Zn) – single crystal allows to reveal both extreme situations: 
a) the moment when the regular eutectic structure is formed, 
b) the moment when the maximal wavelength of the perturba-
tion appears, Fig. 3.
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Fig. 3a. Frozen s /l interface of the (Zn) – eutectic phase; the juxtaposed 
speculative dotted line is plotted to show the expected, fully parabolic, 
interface shape; 0 < v ≤ v1

Fig. 3b. Almost fully shaped perturbation developed on the s/l interface 
of the (Zn) – non-faceted phase (juxtaposed – speculative, dotted line 
showing possible position of the λSL – wave; marked – expected branch-
ing of the Zn16Ti – faceted phase); 0 < v ≤ v1

Fig. 3c. Co-existence of the ss – state with the parabolic s/l interface of 
the (Zn) – non-faceted phase (locally regular structure) and ms – state 
with the marginally perturbed s /l interface of the (Zn) – non-faceted 
phase (new color superposed over the frozen solid to make the s/l 
interface well-marked) 

The eutectic transformation proceeds under the station-
ary – marginal state in such a way that the irregular lamellae 
/ rods, growing at an imposed thermal gradient and a con-
stant rate of the macroscopic s/l interface displacement, but 
within the operating range of the local growth rates, evince 
average inter-phase spacing ( λ̂ , or R̂) which results from 
the λ, or R interphase spacing associated with the minimum 
entropy production of a given stationary state and λSL – wave-
length of perturbation connected with the rotation around 
this state.

It is important for the current model, that the state of mar-
ginal stability can be located on the paraboloid of entropy pro-
duction drawn for both generalized thermodynamic forces, XT, 
XC (that is, drawn in the “thermodynamic” coordinate system), 
[14]. Therefore, the above statement can be illustrated by means 
of this paraboloid shown in Fig. 4. 

Fig. 4. Illustration of the appearance of the whole spectrum of the inter-
phase spacing as a result of the thermodynamic oscillation between two 
extreme points: A – stationary state with minimum entropy production 
(local minimum of the paraboloid), and B – marginal stability for the 
imposed both G* – thermal gradient, and v* – growth rate; selected: 
R* – half the inter-rod spacing and corresponding λ*

SL – maximal wave-
length of the perturbation of the s/l interface of the non-faceted phase 

The vSL
*   v* – range, distinguished in Fig. 4, is the 

Operating Range for the irregular structure formation (when 
the imposed both: G*, v* are constant). The paraboloid of the 
entropy production is transformed from the “thermodynamic” 
coordinate system (XT, XC – generalized thermodynamic forces) 
into the “technological” coordinate system (v, R) in agreement 
with the performed integration over the V – volume, Eq. (2), 
and under simplification / assumption that the paraboloid does 
not change its shape. 
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2.1. Irregular / regular structure transformation

The transformation of the branched irregular structure into 
the regular structure occurs within the v1 < v ≤ v'1 – range of 
growth rates. Thus, it seems reasonable to provide the simplified 
model / scheme of the irregular structure formation to study the 
mentioned transformation, Fig. 5.

Fig. 5. Simplified model for the irregular structure formation within the 
vSL  v – operating range, where v is a given growth rate imposed in 
the studied experiment and also growth rate of the regular structure in 
some areas located within generally irregular eutectic morphology, and 
vSL is a corresponding rate of displacement of the maximally perturbed 
s/l interface of the (Zn) – non-faceted – phase being currently under 
marginal stability 

The simplified scheme of the irregular structure formation 
allows to formulate a definition for the average interphase spac-
ing. The following definition can be used to describe the growth 
of the lamellar eutectic structure:

 λ̂ = 0.5λ + Sβ + 0.5λSL (6)

The irregular -, into regular structure transformation is justi-
fied by the following reduction of the above definition, that is: 
λ̂ = 0.5λ + Sβ + 0.5λSL → Sα + Sβ + Sβ + Sα = λ. The analogous 
description / reduction can be delivered for the rod-like irregular 
structure, Fig. 5. 

Then, 2R̂ = R + rα + 0.5λSL → rβ + rα + rα + rβ = 2(rα + rβ) 
 2(Sβ + Sα)  λ  due to both irregular -, into regular rod-like 
structure transformation, and subsequently regular rod-like -, 
into regular lamellar structure transformation, Fig. 6. 

2.2. Ti – solute redistribution along the matrix 
of the (Zn) – single crystal

The differential equation for the solute micro-segregation 
which appears during solidification accompanied by eutectic 
reaction is delivered as follows:

 
L LdN x k N x
dx k x x

 (7)

Thus, the solute concentration in the liquid (solidification 
path) is:

 

k kL

L

N x N k x x

N N  (8)

 α = DS tl F –2 (9)

The DS – diffusion coefficient into the solid, [m2/s] and tl – ti-
me, [s], necessary for the solidification of the F – matrix length, 
[m], [2], are applied to the definition of the α – back-diffusion 
parameter (Fourier Number), Eq. (9); x is the current amount of 
the growing grain (dendrite, cell).

Then, the solute micro-segregation at the moving (and 
disappearing) s/l interface (s/l interface path) is given as follows:

 k kSN x k N k x x  (10)

Finally, the solute redistribution after back-diffusion (redis-
tribution path) within the solid could be described as:

 

B

ex in L

N x X

k x X X N x  (11)

where, k – partition ratio, [mole fr./mole fr.]; x – current amount 
of the growing crystal, [dimensionless]; x = X 0 – amount of 
crystal when its growth is arrested and morphology is frozen, 
[dimensionless]; β ex – coefficient of the redistribution extent, 
[dimensionless]; β in – coefficient of the redistribution intensity, 
[dimensionless]. 

The confrontation of the Ti – solute redistribution (measure-
ment points) with the theoretical solute redistribution is shown 
in Fig. 7, for the F – matrix length. 

Fig. 6. Co-existence of different forms of the Zn16Ti – compound as 
observed within the v1 ↔ v'1 – range of growth rates: 1) – transformation 
of irregular branched rods into regular rods (vanishing of branches); 
2) – regular rods as a result of the “1” – structural transformation; 3) – 
transformation of regular rod into regular lamella; 4) – fully shaped 
regular lamella after the completed transformations, [2]
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Fig. 7. Ti – solute redistribution (theoretical, as a result of fitting with 
the use of a suitably chosen back-diffusion parameter, and experimental, 
as a result of the Ti – solute redistribution measurement (points)); a) for 
the Zn-0.02Ti -, b) for the Zn-0.1Ti – alloy; red lines show an amount 
/ width of the strengthening eutectic layer versus the x – amount of the 
growing crystal 

As the solute redistribution is the only measurable param-
eter, the Ti – solute micro-segregation is presented theoretically 
only, on the basis of calculation of the N S(x;0) -, and N S(x;α)  
– function, Eq. (10), Fig. 7.

The mentioned model allows to calculate the solute redistri-
bution and the amount of eutectic precipitate. Thus, the iK – total 
amount of the precipitate, Fig. 8b, is:

 iK (α, N0) = 1 – xK (α, N0) (12)

 

k
kK E

E

x N N N
k

N  (12a)

 xK (α, N0) = 1 when  αE (N0) < α ≤ 1 (12b)

with the definition of the αE – threshold back-diffusion para-
meter:

 E

k
kE Ek N N  (13)

The iK – total eutectic precipitate consists of the iE – equi-
librium precipitate, iE (N0) = iK (1, N0), and iD – non-equilibrium 
precipitate, iD(α, N0) = iK (α, N0) – iE(N0).

The above model, Eq. (7)-Eq. (13) is reducible to the 
equilibrium solidification, (EQS in Fig. 8a), and to the Scheil’s 
theory, [15], (SCHEIL in Fig. 8a) and is able to describe the 

rapid solidification, (RS in Fig. 8a) while taking into account 
the partition ratio behavior shown schematically in Fig. 8a. Both 
models can be compared to each other from the viewpoint of the 
mass balance satisfaction, Fig. 8b.

Fig. 8a. Evolution of the partition ratio versus solidification rate ac-
cording to the current model of the solute segregation / redistribution; 
k0 – equilibrium partition ratio, [mole fr./mole fr.]; υRS – threshold 
solidification rate (crystal growth rate) just between Scheil’s theory 
application and the beginning of rapid solidification, [m/s]; υPS – solidi-
fication rate (crystal growth rate) above which partition-less solidifica-
tion occurs only, [m/s] 

Fig. 8b. Solute redistributions a) according to the Scheil’s theory,  
N B(x; 0)  N S(x; 0), (blue line) and b) according to the current model, 
NB(x;X 0,α) = NB(x; xK,α), β = β ex(x; X 0)β in(X 0,α), (red line)

When the partition ratio reaches unity above the υPS – rate 
then NL(x;0) = N0, which yields from Eq. (8), solute micro-
segregation becomes equal to: NS(x;0) = N0 (segregation-less 
solidification, [25]), which yields from Eq. (10), and solute redis-
tribution becomes equal to: NB(x;X 0,0)  NS(x;0)  NL(x;0) = N0, 
as it yields from Eq. (11) with the coefficient of the redistribution 
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extent β ex(x;X 0) = 0 (according to its definition: β ex(x;X 0) = 
k(1 – k)(X 0 – x)/(1 + kX 0 – X 0), [16]).

The back-diffusion parameter, (Fourier Number), Eq. (9) 
evolution is presented in Fig. 9, in agreement with the current 
model of the solute segregation / redistribution. It is evident that 
the current model of solute redistribution can be developed for 
multi-component alloys according to the modification mode 
analyzed in [26].

Fig. 9. Evolution of the back-diffusion parameter versus solidification 
rate according to the current model of the solute segregation / redis-
tribution; υRS – threshold solidification rate (crystal growth rate) just 
between Scheil’s theory application and the beginning of rapid solidifi-
cation, [m/s]; υPS – solidification rate (crystal growth rate) above which 
partition-less solidification occurs only, (PLS), [m/s] 

The current model, can be referred to the Aziz’s theory, [17] 
on the basis of partition ratio behavior, Fig. 10.

Fig. 10. Evolution of the partition ratio versus solidification rate ac-
cording to the Aziz’s theory, [17], as shown hypothetically in relation 
to the current model

2.3. Protrusion of the strengthening phase

The quite recent solution to the diffusion equation for the 
lamellar eutectic growth is delivered under assumptions of the 

existence of both mechanical equilibrium at the triple point of 
the s/l interface and thermodynamic equilibrium which advances 
ahead of the α /β – interphase boundary at the steady state, [18]. 

This steady state solution to the diffusion equation:

 
L L LN N v N

D zx z
, 

is obtained for the liquid adjacent to the α – phase, and to the 
β – phase, separately: 
a) for the α – eutectic phase formation (the Zn16Ti – phase in 

the Zn – Ti system),

 

L

n
n

N x z

n x nA z
S S

 (14a)

 

n
S

A

n xf x dx n
n S  

b) for the β – eutectic phase formation (the (Zn) – phase in the 
Zn – Ti system), 

 
n

L
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n x S S
B

S
N x z

n z
S

 (14b)

 

n

S
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B
n

n x S S
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S
 

where, fj – function used in the boundary conditions, [mole 
fr.], ( j = α, β), respectively; x, z – geometrical coordinates, 
[m]; δN L(x, z) – difference between the N L(x, z) – varying sol-
ute concentration, and the NE – eutectic concentration of the 
solute.

The above solution ensures the satisfaction of the local mass 
balance, Eq. (15), under condition that the strengthening phase 
protrusion, d, is taken into account, Fig. 11.

 
S SS

L L

S
N x dx N x dd x  (15)

The local mass balance, Fig. 11, corresponds well with the 
phase diagram, Fig. 12, illustrating the eutectic coupled growth, 
ΔTα ≠ ΔTβ, assumed in the model, [18]. 

The protrusion of the eutectic leading phase (strengthening 
phase), predicted theoretically, Fig. 11, and observed experimen-
tally [19,20,27] has also been exposed within the layers contain-
ing the ((Zn) + Zn16Ti) eutectic, Fig. 13. The higher is growth 
rate, v, the smaller is protrusion, d:
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n n

nS
A

n S
d

S

S
B A n

S
 (16)

Eq. (16) can be supported by the use of a proper Growth 
Law, (Sα + Sβ) = f (v), [4]. Similar analysis could be developed 
for the rod-like structure formation, Fig. 13.

2.4. Structural – thermodynamic competition 
within the strengthening layer 

As confirmed experimentally, four ranges of growth rate: 
0 ↔ v1; v1 ↔ v'1; v'1 ↔ v2, and v2 ↔ v3, are selected for the 
different patterns appearance on the basis of the performed ob-

servations, [20]. Thus, it is postulated to compare the entropy 
production calculated for both rod-like -, and lamellar structure 
formation, [4]. First of all, however, evolution of the mechanical 
equilibrium situated at the triple point of the s/l interface is to 
be determined. The evolution of the mechanical equilibrium is 
a function of the v – growth rate, [4], and accompanied anisot-
ropy of the surface free energies. This evolution involves some 
changes of the σ L

(Zn) – surface free energy of the (Zn) – non-faceted 
phase, and the σ(Zn) – Zn16Ti – boundary free energy versus growth 
rate, Fig. 14.

The values of the σ L
(Zn) -, σ

L
Zn16–Ti -, Fig. 14, and addition-

ally estimated, value of the σ(Zn) – Zn16Ti – parameter, have been 
introduced into calculation of the entropy production calculated 
previously, [4], for the formation of both regular structures, 
Fig. 15.

Fig. 11. Local mass balance within the solute concentration micro-field 
for the lamellar growth as associated with the Eq. (15) validity 

Fig. 12. Arbitrary phase diagram illustrating the coupled eutectic growth; 
Tα* – real temperature at the s/l interface of the growing α – phase; 
Tβ* – real temperature at the s/l interface of the growing β – phase; 
undercooling: ΔTα = TE – Tα*; ΔTα = TE – Tβ*

a)

b)

Fig. 13. Observations of the eutectic structure; a) the Zn16Ti – phase 
protrusion revealed in the strengthening layers (the EDS analysis); the 
r, z – coordinate system presents situation of the Ti – solute concentra-
tion micro-field, d – parameter (leading phase protrusion) is determined 
/ exposed as a result of the (Zn) – single crystal growth arresting, b) 
rod-like Cu-Cu2O  eutectic revealed in the coagulated copper droplet 
(grey – black areas) 
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Fig. 15a. Entropy production for the formation of regular, eutectic 
structures; plotted for the v = 1.8 – growth rate, [mm/h]; situation of 
the R̂ – average rod-like spacing; minimum for the rod-like structure 
formation is situated lower; 0 < v ≤ v1

Fig. 15b. Entropy production for the formation of regular, eutectic 
structures; plotted for the v = 5 – growth rate, [mm/h]; both minima are 
at the same level; transformation of regular rods into regular lamellae 
expected; v = v1 

Fig. 15c. Entropy production for the formation of regular eutectic 
structures; plotted for the v = 6 – growth rate, [mm/h]; minimum for 
the lamellar structure formation is localized lower; v'1 < v ≤ v2

Fig. 15d. Entropy production for the formation of regular eutectic 
structures; plotted for the v = 10 – growth rate, [mm/h]; both minima 
are at the same level; transformation of regular lamellae into regular 
rods expected; v = v2

Fig. 15e. Entropy production for the formation of regular eutectic 
structures; plotted for the v = 16 – growth rate, [mm/h]; minimum for 
the rod-like structure formation is localized lower; v2 < v

Fig. 14. Changes of the σ L
(Zn) – specific surface free energy of the (Zn) 

– non-faceted phase, and the σ(Zn) – Zn16Ti – boundary free energy; both 
parameters determined by a heuristic method with a minimum for la-
mellar eutectic growth; the σ L

Zn16–Ti – specific surface free energy is to 
be determined with the use of the parallelogram of vectors shown in [4] 
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Eventually, it is reasonable to gather all the PD
min – minima 

for both studied structures to present their evolution in function 
of the v – growth rate, Fig. 16.

Fig. 16. Values of the minimum entropy production for all the ranges of 
the experimentally imposed rates for the (Zn) – single crystal growth 

3. Concluding remarks

The current theory proves that morphological transfor-
mations observed within the layers strengthening the (Zn) 
– single crystal have the thermodynamic background. Since 
the experiment was performed under stationary state, the only 
criterion which could be used in such a model is the theorem 
of minimum entropy production. Therefore, entropy production 
was calculated for the both morphologies formation and sub-
sequently, subjected to the minimization. Then, the application 
of the postulated criterion: in the structural – thermodynamic 
competition the winner is this kind of the pattern for which 
minimum entropy production is lower, has been successfully 
verified. This verification was obtained by:
a) analysis of the Zn-Zn16Ti phase diagram and some accom-

panying experiments performed within four ranges of the 
growth rates, 

b) calculation of the entropy production for both examined 
eutectic structures,

c) development of the Growth Law for both eutectic structures 
appearance,

d) application of the concept of marginal stability to define 
the Operating Range for the irregular eutectic structure 
formation,

e) descriptions of both irregular – into regular structure trans-
formation (debranching), and regular rod-like -, into regular 
lamellar structure transformation,

f) examination of the newly developed theory for the solute 
micro-field formation with the verification of the local 
mass balance which allows to display the leading phase 
protrusion.

The entropy production per unit time and unit volume, 
Eq. (1), has been determined for the isothermal s/l interface. The 

geometry of this isothermal interface should be bound with the 
shape of the transition layer, [21]. 

Calculation of the entropy production per unit time, Eq. (2), 
is currently limited to the entropy production associated with the 
mass transfer only. It is self-explanatory because heat transfer 
runs very quickly in comparison with the mass transfer. Thus, 
contribution of the heat transfer to the entropy production is 
negligible, [8]. 

Moreover, calculation of the entropy production per unit 
time, Eq. (2), is performed for the 0 ≤ z ≤ zD – boundary layer, 
where, zD ≈ D/v. 

A deviation from the thermodynamic equilibrium, usually 
measured as the ΔT – undercooling, is identical for the both 
eutectic phases, ΔT = ΔTα = ΔTβ, in the first approximation. 
However, calculation of the entropy production allows to apply 
different real values of undercooling, ΔTα ≠ ΔTβ, [4].

Originally, according to the thermodynamics of irreversible 
processes, the PD – entropy production is the function of the XT 
– primary thermodynamic force, and the XC – coupled thermody-
namic force, [22]. However, integration, Eq. (4), transforms the 
calculation of the entropy production from this „thermodynamic” 
coordinate system into the (v,Sα + Sβ); (v,rα + rβ) – „technologi-
cal” coordinate system, [4]. The entropy production plotted in 
the “thermodynamic” coordinate system has the shape of the 
paraboloid. Initially, (for simplification) it was assumed that 
the mentioned paraboloid conserves its geometrical shape in 
spite of the applied mathematical transformation, P(XT, XC) → 
P(v,(Sα + Sβ)); P(XT, XC) → P(v,(rα + rβ)), Fig. 17. However, 
there is a good prerequisite for plotting a real shape (function) 
of the entropy production. 

A significant advantage of the performed transformation is 
that the entropy production was integrated over two variables: 
z, and x, only. This result is in the coupling with the solution 
to diffusion equation, [6], which is expressed in function of the 
same variables: z, and x, [4]. 

Particularly, at the vK – critical growth rate, perturbation 
disappears, the regular structure is formed exclusively, and 
completion of the B  A transition is satisfied. 

The AMEP – trajectory contains all the local minima at which 
the stationary processes can proceed, and BMS – trajectory is 
bounded with the marginal stability for which the excess entropy 
production reaches zero, vSL(v) < v, as λSL(v) > 2rβ (v).

Additionally, 2rβ > rα + rβ; R(v) – function, denoted as GL, 
shows the speculative position of the Growth Law, (developed 
in [4]), plotted, however within the primary coordinate system, 
XT, XC, The MS is speculative position of the corresponding 
marginal stability. 

Not only is the whole spectrum of the inter-phase spacing 
produced during the (Zn) – single crystal growth (during the 
system oscillation between the AMEP – trajectory, and the BMS  
– trajectory) but also is the debranching proceeded continuously 
in the v1 ↔ v'1 – range of growth rates as well. Thus, according 
to the current experiment, the B  A transition begins at the 
imposed v1 – rate and is completed at the imposed v'1 – rate, 
when the A – attractor is the only state of stability. In reality, 
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this is the stationary state as the entropy production reaches the 
local minimum of the paraboloid under investigation for the  
v'1 – growth rate. The mentioned structural / thermodynamic 
oscillation and debranching are shown schematically in Fig. 18. 

At the v1 – growth rate the R1 – spacing appears (A – at-
tractor), and at the same time, the marginal stability (B – bifur-
cation located at the maximum of the BMS – marginal stability 
trajectory) is created at the s/l interface of the non-faceted phase 
moving with the vSL1 – rate. 

Between the v1 -, and v'1 – growth rate, the solidification is 
translating continuously (dashed blue-red line in Fig. 18) from 
the PD

R – paraboloid onto the PD
L – paraboloid of the entropy 

production.
Within the v'1 ↔ v2 – range of growth rates the lamellar 

structure is formed, exclusively (blue line on the AL
MEP – trajec-

tory).
At the v2 – growth rate the lamellar structure formation is 

sharply interrupted, and the rod-like regular structure begins to 
appear immediately (red line on the AR

MEP – trajectory, Fig. 18).
The GLL -, and GLR – function show the speculative posi-

tions of both Growth Laws, (developed in [4]), respectively 
(plotted, unfortunately, within the “thermodynamic” coordinate 
system).

The MS – function presents the position of the state of the 
marginal stability for the irregular eutectic structure formation. It 
is assumed (for simplification) that the paraboloid of the entropy 
production drawn schematically in the XT, XC – “thermodynamic” 
co-ordinate system does not change its shape after transforma-
tion into the v, λ, or v, R – “technological” co-ordinate system.

Fig. 17. Paraboloid of the PD
R – entropy production illustrating the irregu-

lar rod-like eutectic growth within the XT, XC – coordinate system (the 
v,R – coordinate system is also incorporated); A – attractor connected 
with the regular eutectic structure formation at the imposed v1 – growth 
rate (R1 – spacing characterizes the regular structure), and B – bifurca-
tion which appears in the state of marginal stability, at the vSL1 – growth 
rate; analogously, solidification proceeds at the v2 – growth rate with 
R2 (v2) – spacing, and adequate maximal wavelength of perturbation

Fig. 18. Thermodynamic illustration for the formation of rod-
like irregular structure, rod-like -, and lamellar regular structure 
in the strengthening layer of the (Zn) – single crystal; both the 
PD

R -, and PD
L – entropy production plotted as the paraboloids 

adequate for the XT, X – primary coordinate system (“thermody-
namic” system); XT – generalized thermodynamic force associ-
ated with the heat transfer; XC – generalized thermodynamic 
force associated with the mass transfer
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The 
L R

D D
v v

P P

R
 – criteria (in the “tech-

nological” coordinate system) were applied to obtain some 
expressions for the Growth Law. However, the criteria can be 
used in minimization under condition that: min PD

L(XT, XC)  
minPD

L(v, Sα + Sβ), and min PD
R(XT, XC)  minPD

R(v, rα + rβ), 
precisely. Thus, the following equation is to be satisfied in the 
current theory: 

 

L L
CD T D

T C

R R
CD T D

T C

XP X P
X XS S S S

XP X P
X Xr r r r

 (17)

The fulfilment of the above conditions, Eq. (17) has already 
been confirmed, [23]. On the other hand, the thermodynamics 
of irreversible processes provides the general criterion which is 
substantiated mathematically (the Liouville’s theorem) for the 
stationary process itself: ∂P/∂XC |XT = 0. 

The analyzed Growth Law, (developed in [4]), is general 
in form and is justified by the use of the criterion of minimum 
entropy production. The other versions of the Growth Law are 
also obtained, however, by the use of the intuitive condition 
of minimum undercooling, ΔT = min., [6]. The last mentioned 
theory shows the Growth Laws as follows: 

 λ2v = constL. and R2v = constR. (18)

It can be proved that the version of the Growth Laws, 
Eq. (18), are, from the mathematical point of view, the particular 
case of the current Growth Laws, (developed in [4]). It means, 
that the current Growth Law is reducible to Eq. (18). Moreo-
ver, the mentioned reduction justifies the use of the intuitive 
condition of minimum undercooling, however, under certain 
restrictions only. 

The application of the anisotropy of surface energies, [4], is 
an advantage of the current theory over those which had not taken 
it into a full account. Although both specific surface free energies 
vary across a lamellar width or rod-like radius in the interface, 
their values are characteristic / constant for the triple point for a 
given growth rate, and fulfil the parallelogram of vectors. These 
subtle capillary parameters, Fig. 14, play an essential role in 
the calculation of the entropy production and in the behavior 
of the entropy production examined in function of growth rate, 
Fig. 16. It is justified because the capillary parameters form the 
s/l interface curvature. The s/l interface curvature is taken into 
account in the calculation of the entropy production, [4], accord-
ing to the requirements imposed by the mechanical equilibrium 
situated at the triple point of the s/l interface.

The minimization of the average entropy production, cal-
culated in [4], according to Eq. (3), provides a possibility for the 
formation of a quite new version of the Growth Law.

Selection / application of the two conditions which are re-
sponsible for the creation of the whole spectrum of the interphase 

spacing, Fig. 4, allows to define the v*
SL(v*)  v* – Operating 

Range for the irregular structure formation. 
The analyzed formation of the eutectic morphology pro-

ceeds according to the oscillation between stationary state and 
marginal stability, Fig. 17. The stationary state can be identified 
morphologically by the sinusoidal -, or parabolic shape of the 
s/l interface of the non-faceted phase. The sinusoidal shape is 
sometimes admitted, especially in the development of the formal 
description of the s/l interface curvature. 

However, the parabolic shape seems to be typical of the reg-
ular eutectic structure, Fig. 3a, Fig 3c. The state of the marginal 
stability is identified by the wavy character of the maximally 
perturbed s/l interface of the non-faceted phase, Fig. 3b, Fig. 3c. 

Calculation of the Ti – solute redistribution within the 
(Zn) – single crystal matrix, Fig. 7 visualizes that the material 
properties of the (Zn) – single crystal, as a whole, depend on 
the back-diffusion intensity during crystal growth, with the ap-
plication of the definition: 0 ≤ α ≤ 1, Eq. (9). 

The model for the solute redistribution, [24], illustrates 
that the width of the layer strengthening the single crystal also 
depends on the back-diffusion phenomenon, as explained in Eq. 
(12). It means that the back-diffusion controls the single crystal 
growth to a certain extent. 

The leading phase protrusion, Fig. 3, and Fig. 13a, also 
seems to be essential for the resulting properties of the single 
crystal equipped with the strengthening layers. The observed 
protrusion appears in agreement with the theoretical prediction 
justified by the local mass balance, Fig. 11. 

Contrary to the current model for the solute micro-field in 
the liquid adjacent to the s/l interface, [18], the mass balance is 
not satisfied in the former solution to the diffusion equation, [6]. 
The previous theory, [6], promotes the so-called ideally coupled 
eutectic growth, according to which, ΔTα = ΔTβ, whereas the 
present solution, [18], assumes the coupled eutectic growth only 
and the resultant inequality, ΔTα ≠ ΔTβ, Fig. 12. This inequality,  
ΔTα ≠ ΔTβ is in harmony with the creation of the leading phase 
protrusion, Fig. 11. 

The currently proposed description of the solute micro-field, 
[18], is the general theory, and therefore can be perfectly reduced 
(mathematically) to the previously provided model for the solute 
micro-field in the liquid, [6]. However, the reduction is possible 
under assumption that the width of the eutectic phases is equal 
to each other, Sα = Sβ. It means that the previous solution to the 
diffusion equation, [6], is associated with the virtual, symmetrical 
phase diagrams, only. Unfortunately, it is a significant restriction 
in the application of such a theory. 

Thermodynamics of the irreversible processes requires 
the V – volume to be perfectly defined, [4], while integrating 
the entropy production per unit time and unit volume, Eq. (4). 
Moreover, the V – volume must contain the state of thermody-
namic equilibrium, while the remaining part of this volume is 
under the deviation from this equilibrium. In the current model, 
the required deviation is defined in Fig. 12. 

The present solution to the diffusion equation, Eq. (14), 
shows that the thermodynamic equilibrium is situated just at the 
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boundary between the liquid adjacent to the α – eutectic phase 
interface and that adjacent to the β – eutectic phase interface, 
that means, this state is situated at the elongation of the α /β – 
interphase boundary, Fig. 11. Thus, the V – volume contains 
the thermodynamic equilibrium as required. On the other hand, 
the s/l interface is under deviation from the thermodynamic 
equilibrium as expressed by Eq. (14). 

A bifurcation from the plane s/l interface occurs when the 
v – growth rate is higher than the certain threshold rate, while 
the imposed thermal gradient is constant, [28]. The v3 – rate, 
in the presented experiments, seems to be such a threshold rate 
for the appearance of the nonplanar pattern evolution. Then, the 
strengthening layer might become similar to the solitary wave 
(in the microscale), Fig. 19a. 

This layer seems to present the initial pattern which evolves 
rapidly into cells. This phenomenon is known as the manifesta-
tion of the inherent instability that appears at the s/l interface, 
[29]. 

The mentioned non-planar pattern should be annihilated 
when the Absolute Stability of the s/l interface is ensured by an 
elevated growth rate imposed upon the Bridgman’s system, and 
if the solute concentration is not subjected to any change, [30]. 

The above conclusion is confirmed by the current descrip-
tion of the solute micro-segregation and redistribution behavior 
for the growth rates greater than the υPS – rate, Fig. 8, Fig. 9. An 
application of this description is successfully performed in the 
case of the D-gun spraying of the small particles onto the steel 
substrate (or water substrate) as developed in [25].

The solute concentration is neither subjected to any change 
when the partition ratio becomes equal to unity in the case of 
eutectic growth, [31].

The eutectic rod-like structure observed during stationary 
solidification, Fig 19a, appears periodically. Almost similarly, 
the Cu – Cu2O – eutectic structure forms during copper drop-
lets coagulation in the liquid slag. The eutectic is located at the 
every constituent droplets periphery, Fig. 13b, and Fig. 19b. The 
Cu – core of droplets plays a role similar to the (Zn) – matrix 
of the investigated single crystal. However, contrary to the (Zn) 
– matrix which presents the Ti – solute redistribution, Fig. 7, 
the droplets cores contains pure copper (100 at. %). This is in 
agreement with the adequate phase diagrams. 

The eutectic layers reinforce the (Zn) single crystal, as men-
tioned. The Cu – Cu2O – eutectic, Fig. 13b, Fig. 19b, increases 
the wettability and decreases the specific surface free energy of 

a)

b)

Fig. 19. Rod-like eutectic; a) strengthening layer observed within the (Zn) – single crystal for the v > v3  – growth rate, b) Cu – Cu2O – regular 
eutectic, (e – areas), accompanying the Cu – droplets coagulation
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the copper droplet. As a result, the desired / required coagula-
tion is easier. However, the coagulation is slightly more difficult 
when the lamellar eutectic precipitate appears. 
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