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STATISTICAL DESCRIPTION OF DIFFRACTION PATTERN OF APERIODIC CRYSTALS

Modern crystallography faces a demanding challenge of describing atomic structure and diffraction pattern of quasicrystals, 
which, after 30 years of Shechtman’s discovery, is still an open field of research. The classical approach based on the Braggs and 
Laue equations in three-dimensional space is useless, because the direct and the reciprocal lattices cannot be introduced for ape-
riodic systems. A standard solution to this problem, applied by number of scientists, is to retrieve periodicity in high dimensions. 
This is a purely mathematical approach with some difficulties from a point of view of physics. It is mathematically elegant, but 
not applicable to all aperiodic systems (e.g. Thue-Morse or Rudin-Shapiro sequences). It meets also a serious trouble in a proper 
description of structural defects, like phasons. In our opinion the most successful alternative to the multidimensional description 
is a statistical method of diffractional and structural analysis of aperiodic systems, also known as the average unit cell approach 
(AUC). In this work an application of the AUC method to selected aperiodic systems, including modulated structures, quasicrystals 
and covering clusters, is discussed in the form of a mini-review. A reader can find more details in the cited references.
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According to the current definition of a crystal (established 
by the IUCr in 1992), it is a body of an essentially discrete dif-
fraction pattern. This definition covers both periodic structures 
(“classical” crystals), and aperiodic structures (including modu-
lated systems and quasicrystals). 

Quasicrystals differ from “classical” crystals by a lack of 
periodicity (they are though aperiodic structures) manifested by 
occurrence of additional, forbidden by classical crystallography 
elements of symmetry. Periodicity is broken in the most evident 
way by an appearance of the five-fold rotational symmetry, which 
itself is incompatible with the translational symmetry [1,2].

René-Just Abbé Haüy is often considered a father of clas-
sical crystallography. In 1784 he showed that outer shapes of 
crystals can be explained by periodic arrangement of paral-
lelepipeds. From that time a long-range order was inseparably 
connected with periodicity. This paradigm was present in science 
until 1982, when Dan Shechtman made a famous experiment, 
results of which were published in 1984 [3], what led him to a 
conclusion: “We reported herein the existence of metallic solid 
which diffracts electrons like a single crystal but has point group 
symmetry m-3-5 (icosahedral) which is inconsistent with lattice 
translations”. Occurrence of forbidden symmetries in a diffrac-
tion pattern of the solid state materials (named “quasicrystals” 
afterwards) signalized a beginning of a revolution in crystal-
lography. At the same time among physicist a strong belief ex-
isted, stated by Philip W. Anderson – winner of the Nobel Prize 
in Physics for the theory of condensed matter physics – in his 

textbook published in 1984: “…a system of particles obeying a 
simple potential will take up a regular lattice structure”. 

Similar opinion was met among chemists. The most expres-
sive opponent of the new discovery was the double winner of 
the Nobel Prize in Chemistry, Linus Pauling, regarded as the 
most successful chemist of the XX century, who with his all 
authority claimed, that the new-discovered materials are just 
multiple twins – nothing new in crystallography. His famous 
statement must be here cited, where the Shechtman’s discovery 
is bitterly summarized by the quote: “There is no such thing as 
quasicrystals, only quasi-scientists”.

Mathematicians were more open to the revolutionary 
changes coming from the fact, that a translational symmetry 
can be left behind. David Hilbert among his 23 future directions 
of mathematical research outlined in 1900, asked a question of 
existence of polyhedra enabling a space covering in a strictly 
aperiodic manner. Alan L. Mackay already in 1960’ modeled 
the atomic structures of crystals using clusters of atoms exhib-
iting forbidden symmetries. On the other hand Roger Penrose 
discovered in 1974 a famous plane covering with a tiling of only 
two elements [4].

The following experiments (with use of electron micros-
copy imaging) contradicted a hypothesis of twins – quasicrystals 
were eventually accepted as a new class of materials. In 2011 
Dan Shechtman was awarded a Nobel Prize in Chemistry for 
a discovery of quasicrystals. On this example one can say that 
a discovery is just a beginning of a long way to convince oth-
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ers. A fight with “disbelievers” is often a lot more difficult than 
a discovery itself. A lack of own conviction about uniqueness of 
a discovery is the biggest problem. There must have been many 
other scientists who had contact with quasicrystals in their stud-
ies long before Shechtman’s discovery. Their results, however, 
become unknown.

Due to the lack of periodicity one should remember, that 
the Laue construction (Nobel Prize in Physics in 1914) and the 
Braggs conception (Nobel Prize in Physics in 1915), commonly 
used in classical crystallography, cannot be applied anymore. The 
absence of a direct lattice means also inability in constructing 
a reciprocal lattice. A fundamental assumption of the classical 
crystallography on the identity of the symmetry elements in re-
ciprocal and direct spaces loses its significance. A comprehensive 
and uniform approach to the structural description of all these 
systems is highly expected. 

One possible solution would be a use of a higher-dimension-
al periodic structure. Here, an additional space (called internal or 
perpendicular space) is introduced, where atoms are represented 
by stretched objects with the inscribed so-called atomic surface 
(also called occupation/acceptance domain) [5-7]. Only those 
atoms which internal coordinates in the multidimensional space 
belong to the atomic surface build a physical atomic structure 
in the real space. In higher-dimensional description the atomic 
surfaces are just hypothetical objects introduced to simplify 
mathematical derivations. A physical interpretation of the atomic 
surface is delivered by another approach to structural description 
of quasicrystals, namely the statistical method, also called the 
average unit cell approach (AUC) [8,9].

In the AUC approach the structure is described only in 
physical 3D space. Some periodicity of a system is recovered 
in the physically measured diffraction pattern. This is a result of 
a general property of the Fourier Transform (FT) and is related 
to the periodicity in the multidimensional space in the so-called 
higher-dimensional approach. For a given scattering vector (k) 
describing the diffraction peak position in reciprocal space, 
a hypothetical reference lattice is built in real space with a lat-
tice constant λk = 2π /k. The relative (reduced) atomic position is 
derived as a distance (u) of the atom with respect to the nearest 
node of the reference lattice (Pk(u)). This construction brings 
a statistical distribution of atomic positions, which is mathemati-
cally well defined. The FT of the distribution gives not only the 
required structure factor for particular k vector but also for all 
its higher harmonics. By picking another scattering vector (q), 
which is incommensurate with the previous one, and repeating 
the same procedure as previously described another statistical 
distribution (Pq(v)) is obtained. Using a combined distribution 
Pkq(u,v) one is able to scan arbitrarily densely a complete diffrac-
tion pattern at every position nk + mq (n and m are integers) of 
any kind of aperiodic system. Additionally, if there is a scaling 
in the structure itself (like τ-scaling for the most known quasic-
rystals) only a single, marginal distribution Pk (u) is sufficient 
for reconstruction of the whole diffraction pattern.

The statistical description is in fact completely equivalent to 
the multidimensional one, with some differences. One difference 

is present in different indexing scheme: in the AUC method we 
introduce separate indexes for main reflections (n) and satellite 
reflections (m). Multidimensional periodic space is scanned 
along respective periodic directions (Fig. 1). The atomic surface 
known in multidimensional description becomes the AUC after 
applying an oblique projection of the multidimensional space 
on the physical space. The two approaches are equivalent, if the 
higher-dimensional description is possible. We know a number 
of examples where lifting to higher dimensions is not possible 
(e.g. Thue-Morse or Rudin-Shapiro sequences [2]). In such cases 
the AUC method can still be in use, as well as in all examples of 
periodic and aperiodic crystals (with long-range atomic order-
ing) [10] and amorphous materials (with short-range ordering 
only) [11].

Fig. 1. Equivalence of the higher-dimensional and the statistical method. 
Nodes of the periodic multidimensional (2D) lattice are projected on 
the parallel direction x||, if their perpendicular components x belong 
to the atomic surface (AS, red). The AS projected along a direction 
perpendicular to the scattering vector k(k||, k) (blue dashed line) gives 
the AUC (green)

A very simple application of the AUC formalism is a single 
slit diffraction experiment. Here, a multidimensional analysis 
cannot be successfully used. A physical background of the 
experiment is the following: a monochromatic plane wave of 
awavelength λ uniformly falls at the slit of width a. Light diffracts 
passing through the slit and the interference occurs next. In the 
statistical description a slit is replaced by the uniform probability 
distribution P of a rectangular shape, of a height equal for all 
scattering vectors k. After the FT of the uniform distribution 
function P we get a simple result, as shown in Figure 2, in the 
form of the following equation:

 

2sin sin,  where    wI w a
w

  (1)

with θ being the diffraction angle. 
The calculation of the diffraction intensities for a diffraction 

grating with N slits is equally easy. In this case, the diffraction 
diagram depends on the number of slits, and consists of Bragg 
reflections (with N2 scaling) and diffuse component in between 
(vanishing as N goes to infinity).
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Another example of a big importance in crystallography is 
a modulated structure. The simplest case concerns 1D system 
with harmonic (sinusoidal) positional modulation [12], for which 
the AUC can be easily derived analytically. In the Figure 3 we 
show the probability distribution function derived for the modu-
lation vector q incommensurate with respect to the basic wave 
vector k0 related to underlying periodic structure. Performing an 

FT one finally gets the conclusion that the formula for intensities 
in the diffraction pattern of harmonically modulated structure, 
Im(k), is described by Bessel functions

 Im (k) = [J–m(kA)]2 (2)

where m is an index of the satellite reflections, J–m is the Bessel 
function of the first kind of order –m, and A is the modulation 
amplitude. 

Formula (2) is universal for all types of the harmonically 
modulated structures and, seemingly, independently of the choice 
of modulation vector q it gives the shapes of the diffraction 
peaks envelopes. We must, however, be aware of the fact, that 
modulation vector q defines a peak position in reciprocal space, 
k = nk0 + mq0k, and influences the intensities measured in a dif-
fraction experiment. Only main reflections are not affected by 
the choice of the modulation vector, since in this case index m is 
zero. A diffraction pattern of exemplar 1D harmonically modu-
lated structure with first five envelopes of the main reflections 
and some satellite reflections of the order m are pictured in the 
Figure 4. The application of the statistical method to model 1D 
harmonically modulated system was shown in [12].

In the last part of the paper we discuss the application of 
the AUC method to quasicrystals. In literature the diffractional 
and structural analysis of quasicrystals using both, higher-dimen-
sional and statistical, approaches is widely discussed [8,9,13]. 
Here, we limit our discussion only to cluster-based description 
of 2D decagonal quasicrystals modeled by the Penrose ti-
ling (PT).

By the atomic cluster we mean a group of atoms, which 
after translations (not necessary by a lattice vector) and selected 
rotations fills the space with no holes, but with a possible overlap-
ping of neighboring objects. For periodic crystals we can reduce 

Fig. 2. Diffraction on a single slit described by the statistical method. (left) A plane wave incidents a single slit of width a and diffracts; an inter-
ference pattern (intensity as a function of the scattering vector k = sinθ/λ with λ being the wavelength) is observed on a screen; k0 is the selected 
main scattering vector (k0 ~ 2π /λ). (right) The intensity of an incident wave within a slit is uniform and the probability function P(u) of the wave 
intensity (as a function of the position u inside the slit) can be modeled as a uniform distribution; An FT of P(u) gives the intensity I(w) plot (w 
is the reduced scattering vector, w ~ k) which is also an observed interference pattern

Fig. 3. The probability distribution (AUC) for the 1D modulated 
structure with harmonic modulation (A = 0.05, q = k/τ, see formula 
(2)). The full distribution P(u,v) is presented along with its marginal 
distributions P(u) and P(v). Variables u,v are the positions of atoms in 
the AUC description (measured with respect to the reference lattices’ 
nodes). Note, that marginal distributions are not simply projections 
of P(u,v) on the u- or v-axis, whilst it is an integral over P(u,v). For 
example, to get the proper P(v) an integration over P(u,v)du requires 
to consider a slope of the P(u,v) with respect to u-axis, which is large 
at low values of P(u,v) (du/dv is large), and rather small at high values 
of P(u,v) (du/dv is small)
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a cluster to an elementary unit cell – the overlapping does not 
occur. For aperiodic systems an elementary unit cell in physical 
space does not exist, however a cluster description is still pos-
sible. A very convenient cluster to describe 2D PT is a kite-like 
cluster (K17) consisting of 17 atoms. For all kite-clusters the 
average thickness of covering is equal to 1.17 (117%) as it was 
shown in Figure 5. 

Due to cluster covering, some atoms of the cluster K17 must 
be identical in neighboring clusters. By calculating probability 
distributions we can show, that covering rules lead to 7 separate 
regions grouping particular atoms (Fig. 6). Cluster K17 can be, 
therefore, decorated by 7 different kinds of atoms, which gives 
us an opportunity of constructing flexible and diverse atomic 
models within the same quasilattice [14]. Atomic concentration 
must agree with the sizes of respective regions of the AUC (or 
atomic surface in the multidimensional models) corresponding 
to given decorating atoms.

Fig. 4. Diffraction pattern of the 1D harmonically modulated structure 
with first 5 envelopes labeled with index m and marked with different 
colors

Fig. 5. (left) Cluster K17 with 17 possible positions for 7 different decorating atoms (marked with different shapes and colors). (right) Cluster 
structure (thick lines) superimposed on the rhombic Penrose tiling (thin lines) with possible covering area marked with grey

Fig. 6. Division of the AS (or AUC) into 7 separate regions (labeled with T1-T7 and marked with different colors) grouping 17 different atoms 
decorating the cluster K17
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Conclusions

In this paper we discussed a statistical method of describ-
ing atomic structure of aperiodic systems and their diffraction 
patterns. The AUC method is mathematically correct and can be 
applied for any type of structure (periodic or aperiodic crystals). 
The method is stable to all types of defects – e.g. phasons, or 
thermal phenomena like phonons, which was not discussed in de-
tails in this paper (see e.g. [15]). It gives, however, an important 
predominance over the equivalent higher-dimensional approach. 
The statistical description is an alternative to higher-dimensional 
method, and the AUC can be treated as oblique projection of the 
atomic surface on the physical space. It is however more general, 
and gives a direct physical interpretation of the atomic surface. 
Possible extension of the AUC approach to include multiple 
scattering effect by considering a convolution of probability 
distributions is a subject of our current and future studies.
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