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ANALYSIS OF THE EAF OPERATION BY PROCESS MODELLING

ANALIZA PRACY ELEKTRYCZNEGO PIECA LUKOWEGO PRZEZ MODELOWANIE

Process modelling is often used for the observation and control of the EAF process. Online process models allow the
calculation of values incapable of measurement like the actual liquid and solid steel mass in the furnace or the permanent
monitoring of the actual mean temperature of the liquid steel.

An additional benefit comes from offline process simulations allowing an affordable scientific investigation of the EAF
operation. The process model can be regarded as a software replacement of the real furnace. Since a specific process model
may predict not all relevant information and not all model parameters are known with a sufficient accuracy, the process models
need to be validated. For studying the fundamental behaviour of the process and its optimization options, the model has to be
as simple as possible — but not simpler.

By using a multi-zone meltdown model [1], the EAF operation is analysed on a theoretical basis. An exemplary model
analysis is provided. The process modelling tools are used to demonstrate how to determine optimum DRI feeding or scrap
charging procedures. The model predictive control (MPC) approach for continuous DRI feeding is found to be as efficient as
global process optimizations (in theory).

Keywords: modelling, electric steel making, melting, electric arc furnace (EAF), process model, model predictive control,
optimization, automation, charging

Modelowanie procesu jest czgsto wykorzystywane do obserwacji i sterowania piecem lukowym (EAF). Modele procesu
on-line pozwalajg na obliczenie warto$ci niemozliwych do zmierzenia, jak aktualna masa stali w postaci ciekiej i statej w piecu
lub staly monitoring biezacej temperatury cieklej stali. Dodatkowa korzyScia pochodzacg z symulacji off-line procesu jest
mozliwo$¢ badari naukowych, dotyczacych sterowania EAF. Model procesu moze byé traktowany jak komputerowe zastapienie
rzeczywistego pieca. PoniewaZ okre$lony model procesu nie moze przewidywaé wszystkich istotnych informacji i nie wszystkie
parametry modelu s3 znane z dostateczng dokiadno$cia, modele procesu musza by¢é weryfikowane. Aby zbadaé wlasciwe
zachowanie procesu i parametry jego optymalizacji, model musi by¢ jak prostszy.

Uzywajac kilkustrefowego modelu topienia, praca pieca tukowego jest analizowana w oparciu o teorig. W artykule
przeprowadzono przyktadows analizg modelu. Narzedzia procesu modelowania s wykorzystane do przedstawienia mozliwosci
uzyskania optimum dozowania DRI lub ladowania zlomu. Ujecie sterowania modelem przewidywania (MPC) dla ciaglego
dozowania DRI jest tak skuteczne, jak calosciowa optymalizacja procesu (teoretycznie).

1. Introduction arc power, scrap charging data, etc.). The model parame-

ters py have to be determined from fundamental science

The scientific investigation of the Electric Arc Fur-
nace (EAF) is limited by experimental constraints and
the tremendous costs of experiments in production or
pilot plants. Process modelling can offer an alternative
route to gain a theoretical understanding and ideas for the
optimization of the operating procedures at comparable
low costs [10, 11]. As sketched in Fig. 1, the process
model requires input data x; which can be deduced from
the information on the real process (e.g. effective electric
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or inverse modelling (see below). The model finally de-
livers output variables y; which represent measurements
on the virtual process. The end user can treat process
models as a black box and use them as a virtual EAF to
perform process simulations. In this paper, an exemplary
model analysis and theoretical process optimization pro-
cedure using a simple model of the meltdown process
(see next section and [1]) is provided. Similar investiga-
tions can also be undertaken using other process models
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(e.g. [2-5]) — even if they are more complex, as long as
they are detailed enough to be sensitive to the parameters
and variables under investigation.
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Fig. 1. Process model as a software replacement of the real process

This paper focuses on the model analysis and valida-
tion, not on the details inside the computational model,
which are briefly summarized in the next section. The
term model validation is used, because it is common for
the confirmation or corroboration of a model.

2. Model of the EAF

The internal details of a process model are often
confidential and not available to the end users. The pro-
cess models can have their own user interface, they can
be integrated into a level-2 automation environment (on-
line model, see e.g. [3]) or they can be accessed through
common interfaces [6]. In this work, a fast and simple
EAF process model is used (for more details see [1]).
For judging the dynamic modelling results, the model is
summarized briefly.

Following the as simple as possible but not simpler
approach and currently restricting its application area
to the meltdown process, it uses as much fundamental
physics as possible and only a minimum of process de-
pendent coefficients. The model solves differential equa-
tions of physical conservation laws for mass, momentum,
energy and species. For a conserved quantity ; in the
zone i, the differential equation for the time evolution of

i is

d
il Z Fyij+ Sy D
here Sy ; is the sum over all source terms of the balanced
quantity ¢ in the zone i and Fy;; are the fluxes of ¥
between the zones i and j. As an example, for the simple
case of heat transport without mass or species transport
between two zones, the interaction term for the total en-
thalpy H (in J) exchanged between zone i and j can be
modelled by

FH,,‘J = A,‘,j ai,j(TZoundary - T,").

)]

The interaction area A;; and the heat transfer co-
efficient ¢; ; must be provided, while the actual bound-

ary temperature Tb"""d‘"y has to be calculated, e.g. from
symmetry relatlons As the zones are modelled by accu-
mulated contents like H, the heat conduction inside the
zones has to be included into a; ;, which is also used to
take boundary layer effects into account. For interactions
like melting or chemical reactions, where combined heat,
mass and species transport takes place, the interrelations
of the F,; ; have to be taken into account, i.e. by solving
the resulting (nonlinear) equation system to determine
all F,;; self consistently. The source terms Sy; are used
to include external parameters like electric arc heating,
alloying, charging etc.

In Table 1, the different zones and balanced quan-
tities are summarized. The enthalpy H is balanced for
all zones, while the mass can change only in the zones
2-5 and the carbon mass M is balanced only between
liquid and solid.

TABLE 1
Zones and balances quantities of the EAF process model
No./balances quantity [ 0 1 2
1 | upper shell H ] - -
2 | liquid metal H [N | M kgl | Mc (ke)
3 | solid metal H M Ilkgl | Mc [kgl
4 | slag H | M kgl -
51 gas HJ]|M kel -
6 | roof H i -
7 | lower shell H ] - -

An example of the dynamical modelling results is
shown in Fig. 2 and 3. The calculation was done for
a model furnace (without using chemical energy inputs)
and the parameters were obtained by optimization as fol-
lows. The optimization target was the energy efficiency.
The parameters varied were the weight distribution be-
tween the two baskets and in Fig. 3 also the overheating
before setting basket 2, while in Fig. 2 basket 2 is set
after the melting of 90% of basket 1. Electric power was
fixed to 80 MW, tapping weight to 80 t and tapping tem-
perature to 2073 K. Under these circumstances, higher
energy efficiency and smaller tap-to-tap times are pre-
dicted for the second parameter setting (Fig. 3), where
the second basket is dropped into an overheated melt
minimizing the freezing of the liquid steel onto the scrap
of the second basket, as shown in Fig. 2. Such an op-
timization procedure cannot deliver results of universal
applicability. It has to be performed after obtaining the
parameters and constraints for a specific furnace. The
model is also able to run online using real plant data
and the optimization procedure is fast enough to be in-



tegrated into the level-2 system, i.e. as an “optimized
meltdown recipe proposal system”.
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Fig. 2. Results of the dynamic EAF process model (80 MW, no
chemical energy) without overheating phase before charging the sec-
ond scrap basket
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Fig. 3. Results of the dynamic EAF process model (80 MW, no chem-
ical energy) with an overheating phase before charging the second
scrap basket

3. Process model analysis

Using the simple model described above as an ex-
ample, the general procedure of a systematic analysis of
an EAF process model is now described. For simplici-
ty, chemical energy inputs are neglected and the target
parameters are selected to be energy efficiency (kWh/t)
and tap-to-tap time (TTT).

The first model analysis task is the sensitivity anal-
ysis. This procedure allows the determination of the sen-
sitivity of a specific output value y; of the process (or
the model) to changes in a specific input value x; or
parameter p;. The local sensitivity of the result y; for
the parameter p; and the input vector x with respect to
the variable x; is obtained by calculating
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As an example, a scrap weighting error of 1% yields
an uncertainty of 0.2% in the energy efficiency (kWh/t)
and 1% in the tap-to-tap-time. The sensitivity analysis
is used to quantify the local importance of variables (x;
or px). As an example, the relative sensitivity of the
calculated energy efficiency related to the heat transfer
coefficient @y from the solid to the liquid is 0.3, i.e.
a 10% uncertainty in @y yields a 3% uncertainty in the
energy efficiency.

The sensitivity analysis is of special importance for
the judgement of modelling accuracies. As an example,
a scrap weighting error of 1% implies a 15 K uncertain-
ty in the liquid steel temperature prediction around the
tapping point. Deviations between model predictions and
measured values have to be weighted against the prin-
cipal inaccuracies of the parameters and input values.
In the EAF, the most inaccurate factors seem to be the
weighting and property determination of the charging
materials, the deslagging amounts and the off-gas flow
(false air).

The second task is the determination of the model
parameters p;. If possible, one should use independent
experiments or calculations. All process models have
parameters to be set by the end user. It is the task of
the model developers to reduce the number of the re-
quired parameters to a minimum. Accurate modelling of
physical processes (e.g. heat conduction in the lining)
can replace parameters difficult to get from experiment.
Laboratory experiments (e.g. [7]) and fundamental mod-
elling can give independent parameter setting informa-
tion, e.g. for the ayparameter mentioned above. Finally,
a (limited) number of parameters have to be determined
from plant operation data. By varying these parameters
and ‘calctilation “of the mean (quadratic) deviation be-
tween measured values (e.g. liquid steel temperature in
the overheating phase) and predicted values can be min-
imized. This procedure is similar to regression meth-
ods and often called inverse modelling. Only deviations
above those resulting from the inaccuracies of the in-
put values should be counted. Additionally, a significant
sensitivity of the parameter to be determined against the
measurements used must exist. As an example, melt tem-
peratures can be used for parameter determination only
if they where measured in an overheating phase without
any skull material left in the melt — since its amount
cannot be measured.

The third task is the determination of the models
prediction horizon. This term can have different mean-
ings. As an example, there is a temporal prediction hori-
zon for the melt temperature. As long as the exact mass
and all energy sources and losses are known as a function

SH)) = 3
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of time, the melt temperature can be predicted forever.
If there is an uncertainty in the mass or the energy bal-
ances, the temporal prediction horizon can be calculated
analogous to the sensitivity mentioned above.

Another method is the comparison between predict-
ed and measured values as mentioned above in order
to calculate some measure for the prediction horizon of
a specific parameter set in terms of correctly predict-
ed heats. This gives important information on the inter-
polation and extrapolation capabilities of the model as
discussed in the following paragraph.

A complex question is the prediction horizon re-
garding the optimization of the process with respect to
a specific target function (e.g. energy efficiency). The
results of the optimization may lie in parameter ranges
where no experimental data was available during the pa-
rameter determination step. As long as this is not the
case, numerical process optimizations should be reliable
(interpolation mode). If not, the extrapolation capabil-
ities of the process model need to be determined. This
can be done without new plant experiments by partition-
ing the available data with respect to the parameters of
interest. If only one part of the data is used for the param-
eter determination, the other part can be used for testing
the extrapolation capability of the model. The resulting
information should be used to limit the stepping in pa-
rameter space outside the area covered by available plant
data. This will allow for a secure process optimization
maximizing the yield in terms of data and sustainable
results at the lowest level of risk.

Similar methods can be used for model simplifica-
tion or falsification efforts. These methods support re-
search prioritization and sustain the confidence into the
models by quantifying their strengths and weaknesses.
The methods can be used for benchmarking and heuristic
model verification.

An illustrative example will demonstrate the risks
taken by not performing the steps above. Any process
model can “predict” the tapping temperature as long as
the furnace operation procedures and the inputs during
the parameter determination and model validation phase
are left unchanged. Alternatively, a process model can
be adapted at any time to a measured liquid steel tem-
perature value leading to a good “temperature predic-
tion performance” for some amount of time after feed-
ing the measurements into the model. Such insufficient-
ly validated models or parameter sets can be identified
by trying to make predictive calculations for unusual
charging modes or any other case where the models
extrapolation capability is tested and the model does
not get any information on the anticipated results in ad-
vance.

The next section will try to demonstrate — on a theo-

retical basis — the opportunities of a virtual EAF process
optimization by process modelling.

4. Optimum charging of solid metal

If a model is sensitive to the different charging
strategies, it can be used to predict an optimum furnace
operation. In order to demonstrate the approach, exem-
plary hypothetic data for an 80 MW, 80t tapping weight
EAF is used. For simplicity, the use of chemical ener-
gy is switched off. As shown in Fig. 4, the hypothetic
meltdown of one scrap basket is used as a reference. Re-
garding pure scrap operation, the modelling results can
be summarized as follows: A single basket operation is
a simple option, but due to the low packing density of
the scrap often not possible in practice. Two baskets are
worse if the weight distribution is 50:50 and the 2™
basket is set after melting of the 1%. It becomes more
efficient for an optimized weight distribution. Allowing
for a small overheating phase before setting basket 2 will
provide additional savings, especially in terms of energy
efficiency. A 3-basket operation requires even more opti-
mization regarding weight distribution and intermediate
overheating. Regardless the optimum of a continuous
scrap feeding system, the tap-to-tap-time is minimized
by a 2-basket operation. These findings are exemplary,
the individual optimization results for a specific EAF
may differ — the optimization procedure remains similar.
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Fig. 4. Comparison of TTT and energy requirements for different
charging strategies

Continuous charging operation is very efficient in
terms of productivity and energy utilization, but the
knowledge of the optimum feeding rate is required. Us-
ing a constant DRI feeding rate, the optimum rate can be
predicted by several process simulations carried out in
advance (4" bars from the right). As shown in Fig. 5, the
optimized meltdown process is obtained by feeding the
DRI into a slightly overheated melt, while the amount



of solid in the EAF is relatively small (non equilibrium
melting). When increasing the DRI feeding rate by 10%,
as shown in Fig. 6, this quasi-stationary state is disturbed
and the DRI forms an iceberg. As a result, the energy
efficiency is significantly lower and the tap-to-tap-time
larger. The optimum DRI feeding rate is thus the maxi-
mum feeding rate possible without significantly influenc-
ing the amount of solid or the melt temperature. Process
simulations (inverse modelling) allow determining this
global optimum rate. Such an optimization is more com-
plex than the calculation of a current optimum feeding
rate from the present EAF state information, as described
next.
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Fig. 5. Results of the dynamic EAF process model (80MW, no chem-
ical energy) for a constant DRI feeding rate of 58 kg/s (other param-
eters optimized)

time [min]
25 30

5 10 15 35 40 45
100 T T T v T T T T T 2250
sor " 2000
80 [ liquid steel temperature ;
h 11750
- == .golid steel
KD - . temperature |, 500 g
T e et 4
s B =]
AN 11250 8
A a3
A E
\ -1 1000 o
....... \.
...... K \ 750
liquid mass -‘
1 500
, ‘. solid mass
1500 2000 2500 250
time {s]

Fig. 6. Results of the dynamic EAF process model for the same
parameters as in figure 5 but a DRI feeding rate of 64 kg/s (+10%)

Running the process model online (integrated into
the level-2 system), it can be extended by a some type of
PID-software-controller for the DRI feeding rate (MPC1,
2% bars from the right) or the model can calculate an
optimum feeding rate from its internal knowledge of
the current process state (MPC2). This model predictive
control (MPC) approach can be as efficient as the more
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complex global optimization. Additionally, MPC online
models can react on operating disturbances without the
requirement to redo the optimization calculations.

An important remark on the percentages provided
in Fig. 4 has to be placed. These figures may differ for
a specific real furnace, as chemical energy was neglected
here and the calculations have to be repeated for a spe-
cific EAF after obtaining the plant specific parameters
by inverse modelling. Finally, the optimizer may deliver
results in a parameter range beyond the extrapolation
capability of the model. It may point to an operation
not covered by the plant data used for the calculation of
the model parameters. The practical EAF operation opti-
mization may require some experimental steps and may
deliver less than expected. At least, process simulations
can offer ideas for the best optimization directions.

5. Plant data analysis and real furnace operations
optimization

While the offiine optimization procedures did not
suffer from imperfections in the input values, real plant
data show a significant amount of uncertainty and scatter.
The detailed scrap properties are often highly fluctuating.
As long as the sensitivities to such details are sufficiently
small, the modelling results make predictions possible.
The most straightforward way of getting plant operation
data for offline modelling and model parameter deter-
mination is the installation of the same model into the
level-2 environment (online). By logging the inputs to
the model and the measurements, all necessary data for
offline modelling can be collected.

After collecting the data, its integrity can be checked
and optimized by a data reconciliation step (see €.g. [8]).
Now the real world data sets are available as offline
model inputs and the results can be compared with the
measurements. The data can be used for the parameter
determination step, as described in section 3. If the in-
terpolation capabilities of the model are checked and a
single consistent parameter set describing all heats is de-
termined, the model can be assumed to describe the real
process of a specific EAF. In this case, the model allows
a scatter free analysis of the plant operation procedures
and their optimization opportunities. This procedure is
advantageous against the trial and error approach since
promising optimization directions are not hidden in the
scatter of the real data.

Additionally a statistical analysis of the process data
(see e.g. [9]) can be helpful to predict variables not de-
scribed by the model (e.g. impurities) or to detect qual-
ity changes in the charging information (scrap quality).
Sometimes a combination of statistical analysis and pro-
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cess simulation can deliver data of practical importance
(e.g. the hot heel mass).

6. Summary and conclusions

The analysis of the EAF operation by process mod-
elling was demonstrated using a meltdown process mod-
el as a black box for simulating the meltdown of solid
material and the temperature development in the furnace.
After a brief introduction of the model, the basic steps of
model analysis where demonstrated exemplarily. For the
simple case of zero chemical energy inputs, the charging
of solid material was optimized for 1-3 scrap baskets and
continuous DRI feeding. The results agree with practical
experience and the concept of model predictive control
(MPC) was demonstrated for the calculation of the op-
timum DRI feeding rate by the model itself. The MPC
results are as good as the more resource intensive offline
optimization. Even such a simple model may be used to
obtain directions for process optimization.

While the quantitative results will be different in real
plant observations, the model analysis, parameter deter-
mination and optimization procedures can be repeated
using real EAF plant data. The general procedure of
a systematic analysis of a specific EAF process will pro-
vide a virtual EAF for simulations and the calculation
of optimisation directions.

The iterative repetition of these steps after changes
in the process model is required and the procedures can
be automated. By strengthening in each case the weakest
link (the charging materials quality, the furnace instru-
mentation, the model) production optimization means to
direct both efforts — practical and computational — into
the most demanding directions.
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