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EXAMPLES OF SIMULATION OF THE ALLOYING ELEMENTS EFFECT ON AUSTENITE 
TRANSFORMATIONS DURING CONTINUOUS COOLING

The article shows examples of simulation of the chemical composition effect on austenite transformation during continuous 
cooling. The calculations used own neural model of CCT (Continuous Cooling Transformation) diagrams describing austenite 
transformations that occur during continuous cooling. The model allows to calculate a CCT diagrams of structural steels and en-
gineering steels based on chemical composition of steel and austenitizing temperature. Examples of simulation shown herein are 
related to the effect of selected elements on the temperatures of phase transformations, hardness and volume fraction of ferrite, 
pearlite, bainite and martensite in steel.
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1. Introduction

Continuous Cooling Transformation (CCT) diagrams 
provide important information on the possibility of obtaining 
the required microstructure and hardness of steel depending 
on the process of its continuous cooling from the austenitizing 
temperature. They are useful while determining conditions of 
operation of heat treatment and thermo-mechanical treatment 
[1-3]. Frequently, parameters of phase transformation models 
are calculated based on CCT diagrams. Calculation of a CCT 
diagrams is an alternative for dilatometric and metallographic 
investigations. It reduces time needed to obtain results and costs 
of laboratory testing. Calculation of the CCT diagram can also be 
an introduction to laboratory investigations [4]. Various methods 
are used to model CCT diagrams [5-12]. The models presented 
in the literature can be used in various range of mass concentra-
tions of elements. New work results are still being published in 
this regard [13-15]. 

Position and shape of austenite transformation curves on 
CCT diagrams depend mainly on chemical composition of steel, 
the starting condition of material and austenitizing conditions. 
Elements dissolved in a solid solution largely affect the kinetics 
of austenite transformation during cooling. The condition that 
needs to be fulfilled so that austenite chemical composition 
corresponds to the steel composition, is to dissolve carbides and 
other phases during austenitizing. Introducing several alloying 

elements into the steel makes that their impact is different than 
the total of individual impacts of elements added separately. 
Many times, not only the intensity but also trend of impact is 
changed. Analysis of effect of chemical composition on austenite 
transformations, including characteristics shown on CCT dia-
grams was a goal of multiple works. General trends are shown 
in guides and review articles, among others [1,16,17]. Detailed 
results for selected elements, transformations or steels, are shown 
in investigation and analysis reports [8,18-21].

Works [11,22] show a neural model of CCT diagram that 
allows to calculate a diagram for structural and engineering steels 
based on chemical composition and austenitizing temperature. 
The independent variables are mass concentrations of elements: 
C, Mn, Si, Cr, Ni, Mo, V, Cu, and austenitizing temperature. 
Artificial neural networks and data collection based on 550 CCT 
diagrams published in literature are used for modelling. CCT dia-
grams model is made of 17 artificial neural networks that solve 
classification and regression tasks. 

Calculation process of CCT diagram is divided into two 
stages. At the first stage, it is verified if for the assumed cool-
ing rate, the areas of ferrite, pearlite, bainite and martensite are 
present. For calculations, four neural classifiers are designed. 
The results allow to determine the range of cooling rate for 
each transformation. Upon considering classification results, 
temperatures at the beginning and end of transformations are 
calculated, as well as hardness and volume fractions of ferrite, 
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pearlite, bainite and martensite. The model is implemented in a 
CCT diagram calculation software. The model allows to simu-
late effect of selected elements on any temperature or time that 
describe austenite transformation as well as hardness and volume 
fraction of structural constituents that are formed due to steel 
cooling from austenitizing temperature. The article presents 
examples of simulation.

2. Method

Works [11,22] describe a CCT diagram model. The model 
describes the dependence between the steel chemical composi-
tion and austenitizing temperature and phase transformation tem-
perature, hardness and volume fraction of structural constituents 
in a cooled steel continuously after austenitizing. CCT diagram 
model can be used to simulate impact of chemical composition, 
austenitizing temperature and cooling rate on CCT diagram or 
selected transformation temperature, hardness, volume fraction 
of structural constituents. Simulations can be done in range of 
mass concentrations of elements in which a CCT diagram model 
can be used. This range is shown in Table 1. Additional condi-
tions that limit simulation are shown in Table 2. 

Simulation of steel chemicalcompositionimpact can be 
done for:
• Pearlite into austenite transformation start temperature 

during heating Ac1, 
• Ferrite into austenite transformation finish temperature 

during heating Ac3,
• Maximum temperature at which the austenite is transformed 

into bainite Bs
• Martensite start temperature Ms
• Temperature line of start austenite into ferrite transforma-

tion Fs,
• Temperature line of finish austenite into ferrite transforma-

tion Ff,
• Temperature line of start austenite into pearlite transforma-

tion Ps,
• Temperature line of finish austenite into pearlite transforma-

tion Pf,
• Temperature line of start austenite into bainite transforma-

tion Bs(vc),
• Temperature line of finish austenite into bainite transforma-

tion Bf,
• Temperature line of start austenite into martensite transfor-

mation Ms(vc),
• Hardness of steel cooled from austenitizing temperature,
• Volume fraction of: ferrite, pearlite, bainite and martensite 

in steel upon cooling from austenitizing temperature, 
• Critical cooling rate,
• Time to start transformations.

The neural networks were evaluated based on the mean 
absolute error, Pearson correlation coefficient and the quotient 
of standard deviations. The quotient of standard deviations was 
calculated for the standard deviation of the forecast error and 

the standard deviation of the dependent variable. The quotient of 
standard deviations lets to relate an error made by model to the 
range of values of dependent variable. The best value of this 
statistic is equal to 0. Values of statistics calculated for the data 
from the verification set were compiled in Tables 3-5. The data 
from verification set were only used for numerical verification 
of neural networks.

TABLE 3
Statistic values used to evaluate the transformation temperature 

models (verification data set)

Transformation 
temperature

Mean absolute 
error,°C

Quotient of 
standard 
deviations

Correlation 
coeffi  cient

Ac1 10.4 0.36 0.76
Ac3 12.1 0.22 0.91
Bs 19.4 0.25 0.89
Ms 13.4 0.16 0.97
Fs 16.0 0.25 0.93
Ff 19.0 0.33 0.87
Ps 15.4 0.32 0.88
Pf 20.4 0.32 0.87

Bs(vc) 22.8 0.36 0.84
Bf 26.7 0.44 0.75

Ms(vc) 13.6 0.17 0.97

TABLE 4
Statistic values used to evaluate the hardness model 

(verification data set)

Mean absolute 
error, HV

Quotient of 
standard 
deviations

Correlation 
coeffi  cient

Hardness 31.7 0.20 0.96

One of the ways to show simulation results is a graph that 
describes an impact of one or two independent variables on 
a value of a dependent variable. During calculations, it is neces-
sary to determine constant values for independent variables that 
are not shown on the graph. The effect of chemical composition 
can be analyzed only in relation to concentrations of other ele-
ments. The values of other independent variables assumed during 

TABLE 1

Ranges of mass concentrations of elements

Mass fractions of elements, % 
TA,°C

C Mn Si Cr Ni Mo V Cu
Min 0.1 0.28 0.13 0 0 0 0 0 780
Max 0.68 1.98 1.9 2.5 3.85 1.05 0.38 0.38 1050

TA – austenitizing temperature, °C

TABLE 2

Additional conditions for limiting the range of model application

Mass fractions of elements, %
Mn+Cr Mn+Cr+Ni Cr+Ni Mn+Ni

Max 3.6 5.6 5.3 4.5



333

simulation are especially important in the context of analysis of 
synergic impact of alloying elements on austenite transforma-
tions during cooling. The examples shown in the work assume 
such concentrations of elements to compare results with works 
of other authors.

3. Results

The article shows examples of simulation that can be done 
with CCT diagram model. Graphic presentation of results in the 
form of graphs are shown in Figures 1-5.

Figure 1 shows examples of simulated effect of chemical 
composition of steel on temperature Bs. Two levels of concen-
trations of other elements are assumed. In the presented results, 
Bs is the temperature above which bainite is not formed even in 
isothermal conditions. 

Simulation results (Fig. 1) confirm the impact of elements 
on the Bs temperature shown in many empirical equations. The 
equations are collected, among others, in the works [11,23]. Most 
of them have a linear form. Impact of element on the tempera-
ture is shown by the value of regression coefficient that does 
not change within the whole range of equation. The equations 
do not take into account the relations between the element on 
the transformation temperature and mass concentration of other 
elements. Based on a regression coefficient, it can be estimated 
how much the transformation temperature will change with the 
change of element concentration by 1%. Empirical equations 
differ in range of values of independent variables for which 
they can be used. Equation coefficient are calculated based on 
different datasets by analyzing the impact of chemical composi-
tion on temperature Bs for different groups of steel. The value 
of the regression coefficient is affected by the range of element 
concentration and the distribution of its values in the data set 
collected for calculations.

TABLE 5

Statistic values used to evaluate model of the structural constituents 
(verification data set)

Structural 
constituent

Mean absolute 
error,%

Quotient of 
standard 
deviations

Correlation 
coeffi  cient

Ferrite 5.8 0.30 0.93
Pearlite 4.9 0.27 0.95
Bainite 8.3 0.38 0.88

Martensite 4.9 0.24 0.96

Fig. 1. Simulation of the effect of alloying elements on the Bs temperature of the steel with concentrations: a) and c) 0.3%C, 0.8%Mn, 0.4%Si, 
0.3%Cr, 0.3%Ni, 0.05%Mo; b) and d) 0.3%C, 0.8%Mn, 0.4%Si, 1.5%Cr, 1.5%Ni, 0.4%Mo
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In all the equations, the highest impact of carbon is shown. 
Sequence of impact of other elements considered in Figure 1 
is not always the same. Just as in the example on the figure, in 
most equations, right after carbon, manganese and molybdenum 
are indicated, then chromium and nickel. Non-linear impact of 
manganese and molybdenum and carbon can be noted for higher 
concentrations of other elements. The effect of molybdenum on 
the Bs temperature decreases for higher contents of other alloying 
elements. It is seen that this decrease mainly occurs for contents 
higher than 0.50% Mo. Non-linear carbon impact is defined 
by Van Bohemen in his formula [24]. The complex impact of 
manganese, nickel molybdenum and chromium is pointed by 
Lee in its formula [25]. These conclusions are confirmed by 
simulation results showing impact of two independent variables. 
Figures 1c and 1d show examples of chromium and manganese 
impact on Bs temperature. A change of manganese impact can 
be noted depending on chromium concentration and concentra-
tions of other alloying elements. The effect of manganese on 
the Bs temperature decreases above a content of about 1% of 
this element. This effect is clearly visible for higher contents 
of other alloying elements. Discussion on the impact of steel 
chemical composition on Bs temperature supported by results 
of investigations for model alloys and commercial steels are 
shown in work [18]. Increasing concentrations of elements that 

reduce Bs temperature in the steel contributes to the formation 
of the lower bainite which is beneficial due to the higher crack 
resistant. Also, the same elements clearly reduce Ms temperature 
which contributes to the higher risk of quench cracks. 

Figure 2 shows examples of simulated impact of steel 
chemical composition on Ms temperature. Just as for Bs tempera-
ture, two concentrations levels of other elements are assumed. 

The results show that carbon is the element that reduces 
Ms temperature the most. Manganese impact is greater with the 
increased concentrations of other elements such as chromium, 
nickel or molybdenum. A similar impact of molybdenum can 
be noted as well. Impact of other elements considered in cal-
culations is similar. Similar conclusions are drawn after ana-
lyzing regression coefficients of empirical equations [11,23]. 
Non-linear carbon impact is pointed by Van Bohemen [24] and 
Andrews [26], who also notes synergic impact of carbon and 
manganese as well as carbon and chromium. Andrews conclu-
sions confirm simulation results of carbon and manganese 
impact shown in Figures 2c and 2d. Non-linear carbon impact 
is especially visible with low concentration of manganese and 
other alloying elements. 

Figure 3 shows simulation of carbon effect on CCT dia-
grams by varying the carbon content from 0.22 to 0.50% for steel 
which contain 0.65% Mn, 0.25% Si, 1% Cr, 0.1% Ni and 0.15% 

Fig. 2. Simulation of the effect of alloying elements on the Ms temperature of the steel with concentrations: a) and c) 0.3%C, 0.8%Mn, 0.4%Si, 
0.3%Cr, 0.3%Ni, 0.05%Mo; b) and d) 0.3%C, 0.8%Mn, 0.4%Si, 1.5%Cr, 1.5%Ni, 0.4%Mo
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Mo, with an austenitizing temperature 850⁰C. Higher carbon 
concentration clearly contributes to the longer time needed to 
start transformations austenite into ferrite as well as austenite into 
bainite. Time needed to begin pearlite transformation is slightly 
changed. The shift of the pearlite region to lower cooling rates 
occurs for content higher than 0.30% of carbon. The ferrite re-
gion reduces in size with increasing carbon concentration. Lines 
describing beginning of bainitic and martensitic transformations 
are displaced towards lower temperature. The ferrite start tem-
perature is affected by carbon content, especially for low cooling 
rates. Temperature of start the pearlite transformation is affected 

less by the carbon content. Increasing the carbon content to about 
0.5% causes that the pearlite and bainite regions are separated by 
an austenite. The results confirm the experimental graphs shown 
in [16]. Similar results are described based on investigations of 
steel and model alloys in the work [18].

Figure 4 shows examples of simulation of chromium and 
manganese effect on hardness of steel with base composition 
0.25% C, 0.25% Si, 0.75% Mn, cooled continuously from 
austenitizing temperature. The addition of chromium does not 
increase the maximum hardness. Increasing the chromium 
concentration to about 1.5% increases the hardenability of the 

Fig. 3. Simulation of the effect of carbon on the CCT diagram of the steel with concentrations: 0.65%Mn, 0.25%Si, 1%Cr, 0.1%Ni, 0.15%Mo, 
austenitised at temperature of 850°C

Fig. 4. Simulation of the effect of chromium (a) and manganese (b) on the hardness of the steel with concentrations: 0.25%C, 0.25%Si, 0.75%Mn 
(a), 0%Cr (b), austenitised at temperature of 900°C
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steel. This may be partly due to the basic chemical composition 
of the steel selected for simulation. In this simulation, chro-
mium is added to steel also containing 0.75% manganese. The 
combined effects of these alloying elements cause an additional 
increase in hardenability. The hardness curve correspond with 
the volume fractions of structural constituents shown in Figure 5. 
High hardness occurs where high volume fractions of martensite 
develop. At long cooling times, the addition of chromium does 
not significantly affect the hardness of steel. In this case, the 
microstructural constituents are only ferrite and pearlite. The 
addition of manganese increase the maximum hardness and 
increases the hardenability. Increasing the maximum hardness 
occurs for content to about 0.65% of manganese. Manganese 
significantly increases hardness at high cooling rates, but has 
little effect on the hardness at low cooling rates. 

Figure 5 shows volume fractions changes of ferrite, pearl-
ite, bainite and martensite as a function of cooling time and 
depending on chromium concentration, for steels which further 
contain 0.25% C, 0.75% Mn and 0.25% Si, with an austenitizing 
temperature 900°C. At long cooling time chromium addition 
increases the volume fraction of pearlite as well as reduces the 
volume fraction of ferrite. Chromium addition increases the in-
cubation time of bainite, consequently bainite is formed at longer 
cooling times. The addition of chromium increases the volume 
fraction of bainite, but the model error (Table 5) does not allow 

this conclusion to be confirmed. Increasing the concentration 
of chromium extends the cooling time in which the martensitic 
transformation occurs. Similar simulation results are shown in 
the work [8].

4. Summary

The article presents examples of simulated impact of steel 
chemical composition on phase transformation temperatures, 
hardness and volume fractions of structural constituents in the 
steel  cooled from austenitizing temperature. Neural model of 
CCT diagrams described in works [11,22] is used for calcula-
tions.

Analysis of impact of an element on the steel properties 
shown in CCT diagrams requires determination of concentra-
tions of other elements. It is necessary to produce model alloys 
and many research experiments. Tests are expensive and time-
consuming. The analysis makes it difficult for synergic impact 
of alloying elements. The addition of several alloying elements 
into the steel makes that their impact is different than the total 
impacts of individual elements added separately. Having an 
adequate model allows to perform initial numeric experiments 
and/or reduce total number of experiments. This reduces the 
costs and testing time [11,27-29].

Fig. 5. Simulation of the effect of chromium on the ferrite, pearlite, bainite and martensite fractions in steel with concentrations: 0.25%C, 0.25%Si, 
0.75%Mn, austenitised at temperature of 900°C
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Most of the empirical equations published in the litera-
ture assume linear impact of alloying elements. The force of 
this impact is a described value of regression coefficient. This 
simplification comes down to estimating temperature of phase 
transformation. However, it makes it difficult to analyze the 
effect of alloying elements on the transformation temperature. 
This issue in the neural model is non-existent. Unfortunately, 
there is a risk of overfitting of the model to the data from the 
training set. Overfitting of neural networks is a rather frequent 
case. In this case, the graphs showing simulation results may 
have areas resulting from overfitting and not synergic impact 
of alloying elements.

Given the errors that are always related to modelling, 
simulation calculations should be partially confirmed with 
laboratory tests. In many cases, it is possible with the results of 
tests of commercial steels and model alloys that are published 
in the literature. The model errors should be also born in mind 
when analyzing simulation results. Small, as compared to the 
value of error, changes of values shown in the graph may be not 
caused by actual effect of an element. They may arise only from 
calculation errors.
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