
BYBY NCNC

© 2020. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCom-
mercial License (CC BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0/deed.en which permits the use, redistribution of 
the material in any medium or format, transforming and building upon the material, provided that the article is properly cited, the 
use is noncommercial, and no modifications or adaptations are made.

Arch. Metall. Mater. 65 (2020), 1, 291-294

DOI: 10.24425/amm.2020.131729

R. STRZAŁKA1*, I. BUGAŃSKI1, J. ŚMIETAŃSKA1, J. WOLNY1

STRUCTURAL DISORDER IN QUASICRYSTALS

One of the challenges of modern crystallography of complex systems (complex metallic alloys, proteins, aperiodic crystals 
and quasicrystals) is to properly describe the disorder in these systems and discuss correctly the refinement results in terms of the 
structural disorder. In this paper we briefly discuss a new approach to phasons and phonons in quasicrystals and focus on the new 
theory of phonons in these materials. A newly derived correction factor for phonons in the form of the Bessel function is the ap-
proximated way of describing optic modes in the phonon spectra of quasicrystals. It is applied to a real decagonal quasicrystal in 
the Al-Cu-Rh system with 56/38 atoms per thick/thin structural unit, based on 2092 unique reflections selected from the collected 
diffraction data, significantly improving the refinement results. The final R-factor value is 7.24%, which is over 0.5% better result 
comparing to originally reported. We believe our work will open a broader discussion on the disorder in quasicrystals (and other 
aperiodic systems) and motivate to develop new approaches to treat the diffraction data influenced by different types of disorder 
in the new way.
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1. Introduction

Quasicrystals are aperiodic structures which undergo two 
main types of atomic disorder: (i) atomic oscillations around 
equilibrium positions (phonons), and (ii) flips of atoms between 
equivalent positions (phasons). The latter is a characteristic of qua-
sicrystals [1]. Both phenomena influence the diffraction pattern 
by reducing the intensities and broadening of the peak profiles. 
In all modern refinements of quasicrystals, likewise of crystals, 
the correction for all structural disorder is made by multiplica-
tive corrective factors, namely the Debye-Waller factor (D-W) 
with exponential form exp(–k2σ2) (phonons) or exp(–k2σ2) 
(phasons), where k/k is the parallel-/perpendicular-space com-
ponent of the reciprocal space scattering vector. We show that the 
exponential multiplicative factor fails in the context of phasons 
and it even worsens the refinement result by introducing a char-
acteristic bias in the plot of calculated vs. fitted intensities [2]. 

One of the big challenges in crystallography of quasicrystals 
is to properly treat weak reflections in the refinement process. 
We know, that quasiperiodic diffraction pattern consists of infi-
nitely dense peaks assemble, of which majority is of very small 
intensities. On the other hand, all modern refinement results 
suffer from the underestimation of the intensity in the weak-
reflections regime in the log-log plot of calculated vs. measured 

intensity [3,4]. In our previous works we suggested that the 
reason for the characteristic bias in the refinement results may 
be the improper treatment of the phasonic correction to the dif-
fraction data together with the effect of the multiple scattering. 
Both phenomena, and especially the latter, are not satisfactorily 
described with a physically justified theory. In our previous 
work we showed, that currently used Debye-Waller factor of 
exponential form is justified and valid for random tiling type 
structure only [5]. We introduced a novel approach to phasons 
(and phonons) in quasicrystals based on the statistical method of 
structural investigation of crystals [6,7]. The very first approach 
to include multiple scattering effect in the refinement of real 
quasiperiodic crystal was done in our group very recently [8].

2. Phonons in quasicrystals

In this paper we discuss the new approach to phonons in 
quasicrystals with the use of the statistical analysis of aperiodic 
systems. As we know, phonons are caused by thermal vibrations 
of atoms around ideal positions in the crystal lattice. The quasi-
periodic systems possess, however, no periodic lattice, and the 
propagation of phononic vibrations through the system cannot be 
compared directly to periodic crystals. Many results published 

1 AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF PHYSICS AND APPLIED COMPUTER SCIENCE, AL. MICKIEWICZA 30, 30-059 KRAKÓW, POLAND

* Corresponding author: strzalka@fis.agh.edu.pl



292

in literature confirm the strong evidence (both experimental and 
theoretical) of sharp acoustic phonon branch [9-11]. Since the 
Bravais lattice does not exists in the case of quasicrystals, the 
Brillouin zone for these materials is rather considered as infinite 
(or numerous) assemble of narrow zones, so the phonon branch is 
fragmented. However, it still resembles very well the linear trend, 
as it is exactly in the case of periodic crystals. Linear dispersion 
relation leads to the exponential Debye-Waller factor, as theory 
of condensed matter physics predicts. The detailed description of 
the optical modes is, however, still not available for quasicrystals. 
We know from experiments and calculations, that the modes are 
rather localized and dispersionless [12,13]. The new approach 
to phonons in quasicrystals appears to be expected.

2.1. Theory of phonons within statistical analysis

The statistical distribution is, next to the higher-dimensional 
approach, the most successful method of describing structure and 
diffraction pattern of aperiodic crystals, including quasicrystals 
[14-17]. Its basic concept is the introduction of the statistical 
probability distribution P of atomic positions calculated against 
some reference lattices, which plays a role similar to atomic sur-
faces (also called occupation/acceptance domains or windows) 
in the higher-dimensional approach. Because quasicrystals are 
two-length-scale systems, we introduce two reference lattices, 
and get new positions u,v calculated as distances of real atomic 
positions with respect to the nearest nodes of the lattices. After 
introducing the scaling relation (which for known quasicrystals 
is given by the golden mean τ ≈ 1.618), the positions u and v are 
not independent, but follow the linear dependence: v = –τ2u. This 
relation is called TAU2-scaling. The distribution P(u,v) is dense 
and uniform and depends on the dimensionality, chosen reference 
lattices, and underlying quasilattice. It is an object constructed in 
the physical space and, repeated periodically, fully describes the 
structure. For this reason, we call it an Average Unit Cell (AUC). 

The structure modeling of quasicrystals is based on the modeling 
of the AUC – Fourier transform of the AUC gives a structure 
factor, and its squared modulus contributes to the diffraction 
intensity. The shape of the AUC for the Penrose tiling is given 
by 4 pentagons (two smaller and two bigger, with inversion) 
[18]. For a simple 1D model of quasicrystals (Fibonacci chain) 
the AUC is a flat distribution of a given (finite) height and width 
(see Figure 1(right)) [19]. For periodic crystals, the distribution 
becomes sum of Dirac-delta functions. For further details on the 
AUC approach to structure modeling see [6,7,20-22].

We explain the influence of phonons on the structural 
analysis of quasicrystals on the example of 1D Fibonacci chain 
(for simplicity). If the atomic vibration around equilibrium 
position have a Gaussian distribution (positional displacement 
undergoes a normal distribution), the linear dependence v(u) is 
smeared along [1,1] direction in (u,v)-space (see Figure 1(left)). 
The shape of the AUC is also influenced by the distribution of 
atomic displacements and gets a Gaussian shape too. Fourier-
transformed AUC leads to the standard exponential correction 
function for phonons, known as Debye-Waller factor (or atomic 
displacement parameter, ADP). The statistical method, however, 
gives a full freedom in considering different distributions, G, 
of atoms undergoing thermal fluctuations. Let up,vp be the dis-
placements of atoms from the equilibrium positions (measured 
against reference lattices and undergoing the distribution G). 
New coordinates in the AUC are: unew = u + up, vnew = v + vp. The 
new probability distribution H(unew, vnew) is within the statisti-
cal approach a convolution of the original distribution P(u,v). 
and distribution G(up, vp) (pairs u, up and v, vp are independent). 
Fourier transform leads to the following structure factor formula:
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where k0, q0 are reciprocal space vecto, for which the referen-
ce lattices are constructed (lattice constants are λ1 = 2π/k0 and 
λ2 = 2π/q0), and h1, h2 – integer indices.

Fig. 1. (left) TAU2-scaling for the Fibonacci chain: linear dependence v = –τ 2u in the case of ideal structure (see inset) gets smeared along [1,1] 
direction in the (u,v)-space. Gaussian distribution of atomic displacements from ideal positions applied. (right) The AUC for ideal Fibonacci 
chain (dashed line) gets smeared according to a Gaussian function if the phonons occur in the system (solid line)
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Very important conclusions come from the formula (1): 
(i) the correction for phonons is a multiplicative factor to the 
structure factor of an ideal structure (like the Debye-Waller factor 
in standard analysis); (ii) no assumptions on the distribution G 
have been made in the course of deriving the above formula. It 
is then a general formula. For further details see [2]

The very interesting case is when we consider a harmonic 
distribution G(up, vp) of atomic displacements from ideal posi-
tions (given by the sine function). It is a very simplistic model 
of atomic vibrations under forces of the harmonic-oscillator-like 
character, which lead to positions up, vp given by the sine function 
of time. We can now refer to the experimental observations, that 
optical modes of phonons in quasicrystals are rather localized 
(with a single given frequency), which is a parameter of a sine 
function in G. With such a choice, a Fourier transform of G gives 
Bessel functions of the first kind, J. 

3. New phononic correction for decagonal Al-Cu-Rh 
quasicrystal

3.1. Sample and measurements

In this section we present the application of the new pho-
nonic correction for a decagonal quasicrystal in the system 
Al-Cu-Rh. We use the diffraction data collected previously by 
Kuczera et al. [4]. Here, we report only basic information on 
the sample preparation and diffraction experiment conditions. 
Decagonal quasicrystal Al-Cu-Rh is one of the best ordered 
decagonal system reported in literature [4,23]. First stable sam-

ples were obtained by Tsai et al. in 1989 [24], but only in 2012 
first structure investigation with X-ray diffraction was done 
by Kuczera et al. Single crystals were prepared by arc melting 
technique with 2-week annealing period and quenching in water, 
afterwards. Samples of size 30×30×30 μm were selected and 
the chemical composition was investigated by EDX technique 
to: Al61.9(3)Cu 18.5(4)Rh19.6(1). The diffraction experiment was 
performed using synchrotron radiation at ESRF Grenoble with 
a single crystal diffractometer KUMA KM6-CH equipped with 
CCD detector Titan, in room temperature. XRD data contained 
in total 162,939 reflections (2370 unique, of which 2092 were 
used for the refinement). The Laue symmetry was found to be 
P105/mmc with screw axis along the periodic direction. For 
further details see [4].

3.2. Starting model and structure factor

Starting model was constructed based on the electron den-
sity map retrieved from the XRD data with the use of charge 
flipping algorithm implemented in Superflip program [25]. 
Edge-length of the Penrose tiles was a = 17.19 Å, and the pe-
riod along c axis was 4.278 Å. Two atomic layers are arranged 
along periodic axis with an inversion symmetry due to 105-screw 
symmetry. The assymetric parts of thick/thin rhombuses were 
decorated with 56/38 atoms and the decoration was taken from 
the final decoration of the Kuczera’s model (see Fig. 2). 

The structure factor of decagonal quasicrystal with arbitrary 
decoration using the Penrose tiling as a quasilattice within the 
statistical method was first derived in [18]. We modified slightly 

Fig. 2. Starting decoration of thin (left) and thick (right) Penrose rhombuses with Al (light-blue), Cu (green) and Rh (violet) atoms. Partial oc-
cupancies marked with incomplete circles
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the structure factor to include new correction for phonons. In our 
refinement program we used the following phononic correction 
given by the Bessel function of the first kind:
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Debye-Waller factor was used in a standard exponential form.

3.3. Refinement results

The refinement procedure was conducted using the interior-
point-algorithm with R-factor as a convergence parameter im-
plemented in Matlab code as the minimization algorithm. The 
R -factor was calculated for 1σ reflections only. In the reference 
paper (original result by Kuczera et al., obtained with standard 
Debye-Waller factor for phonons) the refinement results of 
R = 7.9% was achieved. After using the Bessel-like correction for 
phonons our refinement converged with R = 7.24%. The improve-
ment of the results is quite significant (of about 9% of original 
R), which might suggest the successful use of the new correction 
for phonons developed within the statistical method. Final atomic 
structure does not change much and is essentially the same as the 
starting model. Also, ADPs for phasons is comparable.

4. Summary

In this paper we discussed the problem of disorder in qua-
sicrystals, with focus on phasons and, in more details, phonons. 
We suggested, that the new theory of phonons and phasons is 
expected in the field of quasicrystals and proposed a new ap-
proach, based on the statistical method of structural analysis of 
aperiodic crystals. Due to the lack of translational symmetry, 
we cannot build the theory of phonons in quasicrystals in the 
same manner as in the case of periodic crystals. Despite the 
experimental and theoretical evidence of rather sharp acoustic 
branch, the physics of optical modes remains an open question. 
We suggest to apply the Einstein approximation of dispersion-
less phonons in the optical regime and the distribution of atoms 
around equilibrium positions given by the harmonic function. 
This leads to Bessel-like correction function for phonons in the 
reciprocal space. The new correction applied to real decagonal 
system of Al-Cu-Rh significantly improves the refinement result. 
It must be stressed, that in our refinement procedure we used 
the Bessel correction exclusively. The correction function in the 
form of standard Debye-Waller factor is, however, expected due 
to supposed acoustic phonon branch in this decagonal system. 
Not taking into account the exponential phononic correction 
still lead to a better fit. 
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