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MODIFIED BOHM’S THEORY FOR ABSTRUSE MEASUREMENTS: APPLICATION TO LAYER DEPTH PROFILING 
USING AUGER SPECTROSCOPY 

Modified Bohm’s formalism was applied to solve the problem of abstruse layer depth profiles measured by the Auger electron 
spectroscopy technique in real physical systems. The desorbed carbon/passive layer on an NiTi substrate and the adsorbed oxygen/
surface of an NiTi alloy were studied. It was shown that the abstruse layer profiles can be converted to real layer structures using 
the modified Bohm’s theory, where the quantum potential is due to the Auger electron effect. It is also pointed out that the station-
ary probability density predicts the multilayer structures of the abstruse depth profiles that are caused by the carbon desorption and 
oxygen adsorption processes. The criterion for a kind of break or “cut” between the physical and unphysical multilayer systems 
was found. We conclude with the statement that the physics can also be characterised by the abstruse measurement and modified 
Bohm’s formalism.
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1. Introduction 

Auger electron spectroscopy (AES) is now a widely used 
technique that is used to investigate multilayer systems [1,2]. The 
Auger process is understood as the relaxation of an atom with 
a hole in the inner electron shell by the emission of an electron, 
the Auger electron [2]. The combination of the AES signal and 
Ar+-ion beam sputter system is called a sputter depth profile 
 [1,3-9]. From the theoretical point of view, such multilayer sys-
tems have not been explained correctly. From the experimental 
point of view, the sputter depth profile can be given by a partial 
description of a multilayer system (a film deposition). This means 
that the layer structure of a thin film can usually be observed by 
the depth profile in an experiment, which is called an abstruse 
measurement. Therefore, the layer position can be considered 
to be a natural choice for the selection and numbering. Another 
example of an abstruse monolayer – a coverage profile is based 
on the concept of adsorbed ions on sites on the surface of a solid 
so that the coverage varies from zero to one monolayer given in 
the adsorption process [1,2,10-12]. However, it was found that 
such abstruse physical systems can be described by Bohm’s 
theory [13]. 

In Bohm’s theory, a system of quantum particles is described 
in part by its wave function. This description is completed by 
a specification of the actual positions of the particles. Bohm 
re-interpreted the mathematics of Quantum Mechanics and 
extracted a part of the equation, which he called the quantum 

potential. The theory is strictly deterministic. In what follows, we 
do hope that the modified Bohm’s theory will be experimentally 
verified. Therefore, the main question is: How is the abstruse 
layer profile converted to the real layer structures during the 
adsorption and desorption processes. To answer this question, 
we start our discussion with the Bohm’s equations [13]. Firstly, 
we will briefly review the quantum potential due to the Auger 
electron effect and the Laplace transform formalism. Then, the 
solution of the transformed problem, with the help of the Laplace 
transform, can be obtained for the rescaled depth profiles from 
the experiment.

2. Bohm’s theory

We start our considerations using Bohm’s equations, which 
can be expressed as 
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where Qi is the quantum potential, Si is the Hamiltonian-
Jacobi function, Pi ~ Ri

2 ~ |ψ |2 is the probability density and ψ 
is the wave function; index i denotes i th particle [13]. If Qi 
can be neglected, then the equation reduces to the classical 
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Hamilton-Jacobi equation. This equation describes the trajec-
tories of a particle with the momentum pi = miυi = Si. 

Without losing generality, we will consider the atom of the 
i th-layer that contains an electron with the coordinate (z'), which 
has an initial state wave function ψinitial (z' )exp(–iEo t/ that 
corresponds to the stationary state with energy Eo. The atom is 
excited by a primary electron bombardment and leads to a new 
state with the wave function ψf (z' )exp(–iEf

**t/) and the energy 
Ef

**, where the symbol “**” denotes the two electron ionisation. 
In order to make this possible, we assume an additional particle 
with the coordinate, τp where p denotes the element that will take 
up the kinetic energy of the outgoing electron Eo – Ef

**, which is 
released in the Auger transition. In a simple case, the so-called 
Bohm’s wave function can be expressed by 
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where  initial(τp, t) is the initial function of the Auger electron 
and α(t', t) can be calculated using the time-dependent perturba-
tion theory [13]. The integrand produces a contribution to the 
wave function at a small interval of time dt'. This corresponds 
to the source position of the Auger electron (τp), which during 
the time interval t – t', moves away from the atom very rapidly. 
For example, we can deal with Auger experiments that produce 
holes in the valence states. For the core-core valence (or CC'V) 
transition, the Auger-emission cross section will be given by
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where dτpσ creates a hole of spin σ at the site τp; Ec, Ec' are the bind-
ing energies of the core hole, E is the kinetic energy of the outgo-
ing Auger electron and < dτpσ (t) d

+
τpσ (0)> is the autocorrelation 

function. The Fourier transform of the function can be written 

in terms of the Green’s function so that )(Im EG
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where H is the Hubbard Hamiltonian [14]. Thus, the theoretical 
Auger spectrum in the third Hubbard approximation using the 
unbounded Lorentz density of states can be determined by the 
well-known result 
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with the condition Ec = Ec' = 0, where n–σ is the number of elec-
trons with spin –σ, T V and TV + U are the location parameters 
of the Auger electron peaks, U is the intra-atomic Coulomb 
correlation energy between electrons of opposite spin, Δ is the 
half-bandwidth at the half-maximum peak and δ(·) is the Dirac 
delta function [14,15]. Moreover, the imaginary part of the 
self-energy, i.e.,
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defines the lifetime of the quasi-electrons and shows an addi-
tional peak in the Auger spectrum for nearly half-filled bands. 
Often, the core-valence-valence (CVV) Auger line shape can be 
successfully interpreted as the self-convolution of the valence 
band of density [16]. Moreover, if the life time of the core hole 
is short enough, the Auger electron can interact with the particles 
and fields that are present during the creation of the core hole. 
This means that different physical effects will change the spectral 
intensities. Up to this point, the treatment is essentially the same 
as in the usual approach to the quantum theory. But now, we bring 
in a basically new feature of Bohm’s approach, i.e. that the reality 
includes Auger electrons that follow well-defined trajectories, 
as well as the wave function. From the point of view of Auger 
electrons, each of the non-overlapping parts of the wave func-
tion describes a separate “Bohm’s channel”. If an electron is in 
the channel, its quantum potential is determined by the channel 
alone and other channels do not contribute. 

Bohm theory explains why an actual Auger transition oc-
curs in a time that is much shorter than the mean lifetime of the 
quantum state [13]. We can understand why the Auger transition 
cannot give information about the layer structure. Thus, in our ab-
struse system, the Auger effect is described by a part of the wave 
function and is completed by the specification of the τl-atomic 
layer position. Therefore, the mathematical formalism of the 
modified Bohm’s theory is presented with explicit applications 
to the profiles in the desorption and the adsorption processes. 

3. Modified Bohm’s theory for abstruse measurements 

Thus, we assume the following approximations by using the 
standard method of separation of variables and rescaling depth 
[nm] to the number of monolayers. Hence, the Hamilton-Jacobi 
function is given by
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where z is the monolayer depth of the thin film along the z – axis 
and E' and A are constants. Therefore, Equation (1) can be re-
written as
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In order to discuss the i th-layer, we introduce the concept 
of the sum due to the removal of layers due to ion bombardment 
as well as the adsorbing layers due to the adsorption process. If
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where Ci is a constant, and then we finally obtain the modified 
equation 
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where Nl(z) is the function of the depth profile in a multilayer 
system and E~ is a new constant. In our considerations the asym-
metric shape of the Auger electron line is described by the two 
Dirac delta functions that can be represented by Lorenz func-
tions. This procedure allows us to combine the Auger effect with 
the quantum potential representation. The quantum potential is 
given by 

1
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l izCzQ , where δ(·) is the Dirac delta 

function, i = 1, 2,3... and τl is the source position of the Auger 
electron emission from the i th-layer atoms. This means that the 
potential is due to the Auger electron effect [2,10]. Moreover, 
it also assumes that M = 1, Vl (z) = 2Vo, where Vo is a constant, 
thus Equation (4) can be expressed by
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The application of the Laplace transform to both sides of 
Equation (5) yields the solution for the transformed problem as
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where L{Nl (z)} and Nl (s) denote the Laplace transform of the 
function profile Nl (z), s is the Laplace variable, α and b are 
constants and  is the field of real numbers (for details see [3]). 
Rearranged we get
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The value parameters for the solution of the transformed 
problem can be determined by the experimental data. The joint 
inverse Laplace transform of the (8), i.e. L–1{Nl (s)} = Nl (z), gives 
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where H(·) is the Heaviside step function. This solution of the 
discontinuous function satisfies Equation (5) and will enable us 
to calculate the probability density (Eq. (2)). Thus, if Pl = Pl (z), 

i ii il RzP 22 ||)(  and div(–Pl (z)N(z)2M) = 0, then 

the probability density function can be expressed as 
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where Nl (z) is defined by Equation (9). This means that the 
probability density function predicts the multilayer structure. 
The negative critical value of Pl (z) predicts the kind of break 
or ,,cut” between the physical and unphysical layer systems. 
We see that Eqs. (5) and (10) are the main theoretical results 
and show the modified formalism for the solution of abstruse 
measurements. Of course, different forms of the potential provide 
different results. We attempt to apply to other potential forms, for 

instance 
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satisfies the differential equation
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Note that the last term is due to the quantum potential and the 
C i – factor is the amplitude. A natural generalisation of the mon-
olayer depth profile problem is 
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the molar fraction of the l – element. It is worth pointing out that 
the present formalism indeed leads to the solution of the abstruse 
measurements. We now apply this formalism to two classes of 
experiments. We will show that the abstruse layer profiles can 
be converted to real layer structures. 

4. Theory and experiments in abstruse 
measurements

The Auger electron spectroscopy system consists of an 
ultrahigh vacuum system, a primary electron gun for specimen 
excitation, an ion gun, an energy analyser to detect the Auger 
electron peaks and a computer for data storage [1,2]. The meas-
urement was carried out in an SP-2000 1/M type vacuum system 
on a stationary Auger SEA 02 spectrometer [9-12]. The sample 
was excited by bombardment with the primary electron energy 
Ep = 3 keV and the current Ip = 3 μA from the electron gun. These 
electrons cause (among other interactions) the emission of Au-
ger electrons with characteristic energies. The Cylinder Mirror 
Analyser (CMA) consists of two coaxial cylinders with the inner 
cylinder at ground potential and a potential of – Vexp on the outer 
cylinder. The electrons that are emitted from the source of the 
Auger electrons on the axis move in the field-free space towards 
a mesh-covered annular aperture in the inner cylinder, while 
those within the angular spread and pass into the space between 
the cylinders. These electrons, which have kinetic energy, are 
deflected by the potential of the outer cylinder through a second 
mesh-covered aperture and are focused at the collector current as 
well as on the axis. A general consideration of the current I(Vexp 
+ ΔVexp), where ΔVexp = Vconst sin (ωt ) is the perturbing voltage, 
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can be rewritten as a Taylor series, I(Vexp + ΔVexp) ~ Io(Vexp) + 
+ I'(Vexp)[Vconst sin(ωt)] – I'' (Vexp) [Vconst cos(2ωt)] + ... . The 
term Io(V ) corresponds to the part that does not vary with 
time. Next, the fundamental frequency term is proportional 
to I' (V ), i.e. to the energy distribution N(E) (for example, 
Im GV

σ(E)  NV (E), Auger valence-band spectrum). The second 
harmonic term (2ω) is –I'' (V ) gives the derivative of the energy 
distribution  dN(E) /dE. Simply, scanning the potential – Vexp on 
the outer cylinder of the CMA directly gives the energy distribu-
tion of the electrons pass through it, because the transmission 
of the CMA varies as E, the recorded distribution is not N(E) , 
but EN(E) [1]. Similarly, the differential distribution will be 
not be just dN(E) /dE, but EdN(E) /dE. Thus, for a reasonable 
small modulating voltage (Vconst = 1Vp–p), the second harmonic 
term (f = 5 kHz) in the collector current enables us to plot 
the derivative EdN(E) /dE (see Fig. 1). Because of the small 
Auger signals, studies are usually carried out in the derivative 
mode. The intensity of the Auger peak can be measured as the 
peak-to-peak-height (APPH) in the differential spectrum. We 
have already pointed out that even if a monoenergetic beam of 
the Auger electrons is injected into the analyzer, full-width at 
half-maximum Auger peak is recorded due to various instru-
mental limitations. The analyser transmission and resolution 
were 8% and the analyser about 0.6%, respectively. The energy 
scale was calibrated by measuring the analyser voltage that is 
required to transmit the elastically reflected primary electrons 
of a known energy. In practice, all of the elements, with the 
exception of hydrogen and helium, produce Auger electrons; 

detection sensitivity is typically between 1 and 0.1 percent of 
a monolayer. 

The carbon/passive layer on the NiTi substrate system was 
studied by “in situ’’ removing the carbon atoms using argon ion 
spattering and carefully selecting the sputter parameters. The 
investigated NiTi alloy was produced by Krupp (Germany) with 
a composition of Ti 51.1 at.% Ni 48.9 at.% and the parent phase 
structure [17,18]. The passive layer was achieved after heating 
at 500oC for five minutes in the air atmosphere. The carbon 
was deposited by spontaneous adsorption from the air at room 
temperature [1,9]. This carbon film was studied. 

By monitoring the APPH signal from the desorbed ele-
ments as a function of the sputter time tsputter, we obtain the 
experimental data with an estimated error limit of 7% (Fig. 2, 
top panel). Conversion of the sputter time into the monolayer 
depth in the sputter depth profile can be determined by the re-
lationship s ≈ υsputter tsputter, where υsputter is the sputter velocity 
(Fig. 2, middle panel) [1,9]. We see that the sputter depth profile 
analysis shows the abstruse measurements (Fig. 2, mid panel). 
This measurement problem can be solved using the modified 
Bohm’s theory. Thus, Equation (8) was fitted to the experimental 
data (Fig. 2, middle panel). Consequently, we obtain the solution 
of the transformed problem 

 
ss

s

C

e
s

e
s

e
sss

sN
9

2

9
2

2

2

23

25.1
...

25.1

25.1208.06.1

87.0)(   (11)

Fig. 1. Experimental Auger spectra for the desorbed carbon/ passive layer system. The values of the sputter time are presented in the upper right-
hand corner of each panel
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Substituting the fitted parameters into Equation (9), we have
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where z represents the monolayer depth with an estimated error 
limit of 4% (in the carbon monolayer). 

Fig. 2. Results for the desorbed carbon/passive layer on an NiTi sub-
strate. The experimental data (points) are illustrated in A. Conversion of 
the sputter time into depth (s ≈ υsputter tsputter, where υsputter  0.5 carbon 
monolayer/min) in the sputter depth profile (points) is plotted in B. 
The fitted function (solid line) gives the following parameter values: 
A  0.87, E~ = 0.01 eV, Vo = 0.09 eV, M = 1 kg–1, C = 1.25, τC = 1, α = 1.6 
and i = 1,2,3,...,9. Parameter A is a dimensionless constant, E~ is the total 
energy of Auger electron, Vo is the potential energy of this electron, M 
is the sum of the inverse mass of particles (electrons), C and α is the 
dimensionless constant and τC is the source position of the Auger elec-
tron emission from the carbon layer. The interpolation of Equation (8) 
was used to receive Equation (11) with the help of nonlinear fit as given 
in Microcal Origin. The solution function of Equation (5) is shown in 
panel C (see Equation (12)). The large dots denote the critical value of 
the solution between the positive and negative signs

Equation (12) shows the solution of Equation (5), Figure 2C. 
The probability density function (PC (z)/const = –1/[2NC(z)]), 

where NC (z) is defined by the Equation (12)) and the inverse 
probability density function (const /PC (z) = –2NC(z)) shows the 
typical layer structure and denotes the real number of a multilayer 
system (Fig. 3). Moreover, we can also observe a kind of break 
or “cut” between the physical and unphysical layers. Therefore, 
the carbon film has a thickness of four layers. 

Fig. 3. Probability density function (A) and the inverse probability 
density function (B) for the same physical system as in Figure 2 us-
ing Equations (10) and (12). The large dots denote the critical values 
between the physical and unphysical layers

The second experimental system is based on the concept of 
adsorbed oxygen on sites on the smooth surface (roughness was 
of 8.7 nanometer) of the TiNi alloy so that the coverage varies 
from zero to one monolayer with an estimated error limit of 5% 
(Fig. 4). The monolayer is found when the Auger signal is satu-
rated. These measurements were also carried out with the Auger 
spectrometer using the same material. The mathematical formal-
ism describes the system for monolayer coverage profile, i.e., 
i = 1  S1(z) = NTi (z) (see Equation (5) and Fig. 4). The results 
show that the main oxidation processes (Ti → TiO →TiO2) can 
be separated using the present formalism (for details see [10]). 
This means that the formalism can also be applied to the abstruse 
phase transition due to the adsorption (desorption) process. From 
the theoretical point of view, the quantum potential plays a key 
role in the solution of abstruse measurements. In summary, the 
present formalism enables us to obtain the desired results. Of 
course, the results can also be verified easily by other well-known 
studies [1,2,5-12,19,20]. 
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Fig. 4. Results for the adsorbed oxygen/surface of the NiTi alloy in the 
oxygen medium at a pressure of 10–9 hPa. The experimental data (points) 
are illustrated in panel A. The fitted function (line) for the normalised 
intensity of titanium gives the following parameter values: A  0.056, 
E~ = 0.001 eV, Vo = 0.006 eV, M = 1 kg–1, C = 0.2, τTi = 0.5, α = 0.23 
and i = 1 (see Equation (11)). The solution for one monolayer of Equa-
tion (5) and the inverse probability function are shown in panel B. The 
discontinuity shows the critical value between the oxidation processes

5. Conclusion 

Our final conclusion is that the present formalism of the 
modified Bohm’s theory can be applied to solve abstruse meas-
urements, i.e. the abstruse-multilayer depth-profile can easily 
be converted to a real layer structure; the abstruse-monolayer 
coverage profile can be converted to different oxidation pro-
cesses. Such a parameter theory could lead to new insights and 
experiments. In principle, the present formalism can be applied 
as a powerful tool for analysis in other systems. 
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