
1. Introduction

Condition monitoring of deterioration in the 
metallurgical equipment is essential for faultless operation 
of the metallurgical processes. These processes use various 
metallurgical equipment, such as induction motors or industrial 
furnaces. These devices operate continuously in ironworks. 
Correct diagnosis and early detection of incipient faults allow 
to avoid accidents and help reducing financial loss. Induction 
motors faults include: stator faults, rotor electrical faults and 
failure of electronic components of motor. 

Fig. 1. Induction motors

A good diagnostic method should take the minimal 
measurements from induction motor and extract proper 
diagnosis using pattern recognition. Scientists developed 

methods of condition monitoring of electrical motors and 
various devices [1-20]. Many data processing methods 
(such as FFT, Wavelets, classifiers) were developed in the 
literature [21-26]. Data processing methods are associated 
with diagnostic methods. This paper deals with monitoring 
of electrical faults of rotor of induction motors (Fig. 1). 
A technique of recognition of acoustic signals of induction 
motors is presented in the paper. 

2. Process of recognition of acoustic signal of induction 
motor

Processing of acoustic signal of induction motor is 
not an easy problem. Faultless induction motor and faulty 
induction motor generate very similar acoustic signals. 
Acoustic signal recognition system of induction motors 
was implemented to recognize these small differences 
between signals. This system uses a process of recognition 
of acoustic signal of induction motor (proposed technique). 
This process include a pattern creation process. The 
results of the pattern creation process are feature vectors 
(processed training samples). The first step of the pattern 
creation process of induction motor is recording of acoustic 
signal. Capacitor microphone (OLYMPUS TP-7) and sound 
card were used for this purpose [27, 28]. Other capacitor 
microphone would be also good for recording. Afterwards 
soundtracks are divided. Next divided data are sampled and 
normalized. Afterwards signals are converted through the 
FFT, MSAF10 and Bayes classifier. These vectors are used 
in training step (Fig. 2).
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Fig. 2. Process of acoustic signal recognition of induction motor with 
the application of MSAF10 and Bayes classifier

Moreover process of recognition of acoustic signal 
of induction motor include an identification process. The 
identification process uses test samples to diagnose the 
state of the motor. Steps of the identification process are 
following: soundtrack splitting, sampling, normalization and 
feature extraction. These steps are the same for the pattern 
creation process. There is a prediction step at the end of the 
identification process. In this step feature vectors of training 
samples are compared with feature vector of test samples. 
These comparisons use a priori probability.

2.1. Method of selection of amplitudes of frequencies 
MSAF10

Author proposes method of selection of amplitudes of 
frequencies of acoustic signals of induction motors called 
MSAF10. This method is based on differences between 
amplitudes of states of induction motor. The acoustic signal is 
dependent on the state, rotor speed and construction of motor. 
Steps of MSAF10 are following:
1. Calculate spectrum of frequency of acoustic signal for 

each state of induction motor.
2. Calculate differences between spectra of frequencies of 

states of induction motor: x-y, x-z, y-z. The spectrum of 
frequency of acoustic signal of faultless induction motor 
is defined as x. The spectrum of frequency of acoustic 
signal of induction motor with faulty rotor bar is denoted 
as y. The spectrum of frequency of acoustic signal of 
induction motor with two faulty rotor bars is defined as z.

3. Calculate absolute values of differences between spectra 
of frequencies of states of induction motor: |x-y|, |x-z|, 
|y-z|.

4. Select 10 maximum amplitudes of the frequencies for each 
difference between states of induction motor: max1|x-y|, 
..., max10|x-y|, max1|x-z|, ..., max10|x-z|, max1|y-z|,..., 
max10|y-z| and determine corresponding frequencies.

5. Find common frequencies (1-10) and then determine (for 
these frequencies) the amplitudes of spectrum for each 
state of induction motor.

The method of selection of amplitudes of frequencies of 
induction motor MSAF10 was  presented in Fig. 3.

Fig. 3. Block scheme of MSAF10

Differences between spectra of frequencies for 3 states 
of induction motor with rotor speed 1400 rpm were shown in 
figures 4-6.

Fig. 4. Difference between spectra of frequencies of acoustic signal 
of faultless induction motor and induction motor with faulty rotor bar 
(|x-y|)

Fig. 5. Difference between spectra of frequencies of acoustic signal 
of faultless induction motor and induction motor with two faulty rotor 
bars (|x-z|)
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Fig. 6. Difference between spectra of frequencies of acoustic signal 
of induction motor with faulty rotor bar and induction motor with two 
faulty rotor bars (|y-z|)

Selected amplitudes of frequencies formed the feature 
vectors (Fig. 7). In the classification step these feature vectors 
were used by Bayes classifier.

Fig. 7. Selected amplitudes of frequencies for 3 states of induction 
motor (670, 671, 721 Hz). These amplitudes of frequencies were 
selected by MSAF10

2.2. Bayes classifier

Many classification methods were developed in the 
literature [29-45]. Author selected Bayes classifier [6]. Bayes 
classifier is useful method for classification of feature vectors. 
This classifier uses parameters associated with a posterior 
probability. Posterior probability is defined as:

(1)

where p(nj | m) - probability of instance m being in class nj 
(Posterior probability); p(m | nj) - probability of generating 
instance m given class nj; p(nj) - probability of occurrence of 
class nj; p(m) - probability of instance m occurring.

The classifier used two steps: training step and prediction 
step. These steps used feature vectors. In the prediction step, 
new test samples were analyzed. Samples were classified 
according to the higher posterior probability [6].

3. Results of acoustic signal recognition

Parameters of soundtracks were: sampling frequency 
- 44.1 kHz, bit depth - 16-bit, number of channels - single 

channel, sound file format - WAVE PCM. The analysis was 
conducted for three induction motors. Each of induction motor 
has following parameters: PN = 0.55 kW, UN=220/380 V (Δ/Y), 
IN=2.52/1.47 A (Δ/Y), nN = 1400 rpm, where PN - motor power, 
Un - nominal stator voltage, In - nominal stator current, nN - 
rotor speed. Following motor faults were prepared: faultless 
induction motor, induction motor with one faulty rotor bar 
(Fig. 8), induction motor with two faulty rotor bars.

Fig. 8. Squirrel-cage of induction motor with faulty rotor bar

15 five-second training samples were converted into 15 
feature vectors. Next classifier used these feature vectors in 
the training step. New 72 test samples were converted into 72 
feature vectors. Afterwards classifier used 72 feature vectors 
in the prediction step. Efficiency of acoustic signal recognition 
was expressed by following relation:

(2)

where: NCITS – number of correctly identified test samples 
used in the prediction step, NTS – number of test samples 
used in the prediction step, E – efficiency of acoustic signal 
recognition.

(3)

Where TEASR - Total efficiency of acoustic signal recognition, 
E1 - efficiency of acoustic signal recognition of faultless 
induction motor, E2 - efficiency of acoustic signal recognition 
of induction motor with 1 faulty rotor bar, E3 - efficiency of 
acoustic signal recognition of induction motor with 2 faulty 
rotor bars.

Table 1 showed efficiency of acoustic signal 
recognition of induction motor depending on type of 
signal. The best results were obtained for acoustic 
signal of faultless induction motor and acoustic signal 
of induction motor with 1 faulty rotor bar. It was equal 
95.83 %. Total efficiency of acoustic signal recognition 
of acoustic signal of induction motor was equal 93.05 %. 

TABLE 1
Results of acoustic signal recognition of induction motor with 

application of MSAF10 and Bayes classifier

Type of acoustic signal Efficiency of acoustic signal 
recognition [%]

Faultless induction motor 95.83
Induction motor with 1 faulty 

rotor bar 95.83

Induction motor with 2 faulty 
rotor bars 87.5
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Total efficiency of acoustic 
signal recognition [%]

Induction motor 93.05

4. Conclusions

Acoustic signal recognition system of induction motors 
was presented. This system used technique based on FFT, 
MSAF10 and Bayes classifier. These methods were good for 
analyzing acoustic signals of induction motor faults. Total 
efficiency of acoustic signal recognition of induction motor 
was 93.05 % for 3 classes. The additional analyses should 
be performed for other motors with different operational 
parameters and sizes. Condition monitoring is helpful to 
protect induction motors and metallurgical equipment. Further 
researches will allow to analyze other metallurgical equipment.
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