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MODELING OF MICROHARDNESS OF CARBONIZED CHOSEN CAR PARTS
USING AN ARTIFICIAL NEURAL NETWORK TOOL

ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO MODELOWANIA MIKROTWARDOSCI WARSTW

NAWEGLONYCH WYBRANYCH CZESCI SAMOCHODOWYCH

This paper presents the possibility of using neural networks model for designing a carbonizing process in a fluidized
bed. This process is complex and difficult as multi-parameter changes are non-linear and a car drive cross structure is
non-homogeneous. This fact and lack of mathematical algorithms describing this process make modeling properties of drive
elements by traditional numerical methods difficult or even impossible. In this case, it is possible to use an artificial neural
network. Using neural networks for modeling of carbonizing in a fluidized bed is caused by several net features: non-linear
character, the ability to generalize the results of calculations different from the learning data set, lack of need of mathematical
algorithms describing influence of input parameters changes on modeling materials properties.

The neural network structure is designed and specially prepared by choosing input and output parameters of the process.
The method of neural network learning and testing, the way of limiting net structure and minimizing learning and testing
error are discussed. Such prepared neural network model, after putting desirable values of car cross driving properties in the
output layer, can give answers to a lot of questions about carbonizing process in a fluidized bed. The practical implications
of the neural network models are the possibility of using them to build control system capable of on- line process control
and supporting engineering decision in real time. The originality of this research is a new idea to obtain desirable materials
properties after carbonizing in a fluidized bed. The specially prepared neural network model could be a help for engineering
decisions and may be used in designing carbonizing process in a fluidized bed as well as in controlling changes of this process.
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Praca ta prezentuje mozliwosci zastosowania modelu na bazie sztucznej sieci neuronowej do modelowania naweglania
w zlozu fluidalnym. Proces ten jest skomplikowany i wielo-parametryczny, a zmiany poszczegdlnych jego parametréw sg
nieliniowe. Fakt ten oraz brak algorytméw matematycznych opisujacych wplyw parametréw procesu naweglania na wlasciwosei
mechaniczne elementéw po naweglaniu utrudnia, a niejednokrotnie uniemozliwia zastosowanie tradycyjnych metod symulacji
numerycznej. W tym przypadku, byto uzasadnionym podjecie préby zastosowania sztucznej inteligencji do modelowania tego
procesu.

Przedstawiona w pracy struktura sztucznej sieci neuronowej zostala zaprojektowana dla wybranych parametréw oraz
wielkosci modelowanych procesu naweglania w ztozu fluidainym.

W pracy zostaly oméwione metody uczenia i testowania sztucznej sieci neuronowej, redukcji jej struktury oraz minima-
lizacji bigdu uczenia i testowania. Model neuronowy przygotowany w oméwiony sposéb moze odpowiedzie¢ na wiele pytar
dotyczacych parametréw procesu nawegglania. W przysztodci istnieje mozliwosé zastosowania opisanego modelu do budowy
systemu wspomagajacego decyzje inzynierska i kontrolujacego proces naweglania w czasie rzeczywistyn.

1. Introduction networks can be used for modeling of carbonizing in
a fluidized bed thanks to their three basic features such

The carbonizing process in a fluidized bed is as:

multi-parameter and complex [1, 2], because changes of _ pon-linear character,
parameters during this process have non-linear charac- - ability to generalize the results of calculations for
teristics, shown in Fig. 1. The next problem is the lack of data out of the training set,

mathematical algorithms that could describe it. Neural
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— no need for mathematical algorithms describing the
influence of changes in input parameters on modeled
materials properties [3-7].

The research is divided into eight stages:

— choosing modeled properties of materials,

— choosing heat treatment parameters to prepare data
input vector,

— using a special computer system to obtain a training
data set,

— designing and building a neural network structure,

— minimizing a model structure and a learning error,

— minimizing a testing error,

— using a neural network model for the prediction of
material carbon layer thickness after heat treatment
in a fluidized bed,

— practical verification of the modeling results quality.
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Fig. 1. The carbonizing process F-A/O-D in a fluidized bed [1]

At present different carbonizing techniques are used in
the thermo chemical treatment. One of them is carboniz-
ing in a fluidized bed. It is characterized by high coef-
ficients of heat and mass transfer. These techniques are
very often used in research institutes and small industrial
plants [1, 8, 9].

2. Research material

2.1. Macrostructure of material cross-section

The material for this research has been provided
by the industrial plant, which produces car drive cross-

es used in a lot of car models. The main problem in
designing car drive cross surface layer properties, its
non-homogeneous metallographic, which is presented in
Figures 2, 3.

Fig. 2. Macrostructure of material cross-section, etched by Fry with
visible fluid lines in scale 1:1

2.2. Microstructure of material cross-section

Non-homogeneous metallographic structure in car
drive crosses causes difficulty in designing the carboniz-
ing process, because it is difficult to obtain the same
thickness of a carbonized layer.

Fig. 3. 3.1-3.3 micro-structure cross-section etched by Nital in scale
1:50 in areas shown in picture 3.4

The surface hardness before the carbonizing process
in places chosen in Figure 3 is shown in Table 1.

TABLE 1
Surface hardness of research elements

Places | Hardness [HV]
1 274.7
2 340.8
3 246.5




3. Research work methodology
3.1. Neural network structure

Modeling the process using neural networks can be
started with designing the structure of the network. The
characteristic features of neural nets are a number of lay-
ers and a number of neurons in each layer. The number
of neurons in input layer and the number of input param-
eters are usually equal. For steel the carbonizing process
in a fluidized bed: n = 13. Neural networks inputs are
described by data inputs variables, such as:

X} — Tpod heating time,

Xp — T austenitizing time,

X3 — Tcp cooling time,

X4 = Todp tempering time,

X5 — Twej batch temperature,

Xe¢ — Ta austenitizing temperature,
x7 — Tcnr cooling temperature,

xg = Togp tempering temperature,
Xg — atmosphere type,

X10 — @, air excess coeflicient,
X11 — cooling type,

X1 — batch length,

X13 — batch width.

The size of the output layer is equal to the number of
searched parameters. In this case the number of neurons
in the output layer is divided into four sections shown
in Figure 4. The first three sections which describes the
distribution of microhardness in chosen places shown in
Figure 3, are presented in Table 2.

TABLE 21
First three sections of the output layer of a neural network
. Neurons is the output layer of a neural
Dlstanie from network describing microhardness
Sl[lrli(]:e for corresponding depths
s Section 1 Section 2 Section 3
10 ¥i ¥y Yi7
50 Y2 Yo Y8
100 y3 yu Y19
150 Y4 Yiz Y20
200 ¥s Y13 ya
250 Ys Yia ¥
300 y7 Yis Y23
350 Y8 Yis ¥ Y2

The fourth section in the output layer is built of three
neurons which describe carbon layer thickness after the
carbonizing process in chosen places:
y25 — carbon layer thickness in place 1 shown in Figure 3
y26 — carbon layer thickness in place 2 shown in Figure 3
y27 — carbon layer thickness in place 3 shown in Figure 3.
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This way make possible compared layout of micro-
hardness in three characteristic places of research ma-
terial, this fact was very important for this element’s
producer. The main difficult was obtained the similar
mechanical properties in this places.

After fixing the input and the output layer structure
the next step is designing the inside layers of the model.
As mathematic algorithms describing correlations be-
tween vectors x, and yy are not known it is necessary to
use an unconventional way of building the neural nets.
It is based on information about output and input.

Theoretically the problem of choosing neural struc-
ture is restricted to approximation of multi-variable func-
tion for given vector x, [3]. The case discussed in this
paper concerns multi-dimensional input vector and con-
tinuous activation function. Building that kind of neu-
ral network model is defined by Kotmogorow statement
[12]. He proved that in order to obtain k-dimensional
output vector yy for n-dimensional input vector x, and
continuous activation function, using one hidden layer
neural network built of 2n+1 neurons is sufficient. It is
shown in Figure 4.

ection 1

ection 2

Section 3

Section 4

Fig. 4. Structure of neural network for modeling thickness in accor-
dance with Kolmogorow statement

Where:

X = [x1, X3, .., Xn] — n-dimensional input vector,

Y = [y1, ¥2, ---, Yx] — k-dimensional output vector,

Z1, Z, ---» Zop+1 — hidden layer neurons.
Kotmogorow didn’t define activation function algorithm,
because it is chosen for a particular process likewise
then number of hidden layers. In accordance with Kol-
mogorow, the number of hidden layer changes in range
from n to 3n.

3.2. Learning and testing data

In order to use the designed neural network in prac-
tice it should be taught by learning data set. The size of
learning data set and the size of artificial neural network
was depended on the expected generalization degree,



262

which is the correct answer of mode] for the input data
different from the data of learning set. Neural networks
taught by learning set should be hundred times bigger
than the number of adapted parameters of network (the
quantity of synaptic weights connecting artificial neu-
rons) would have better generalized qualities. If those
proportions are disturbed, the network has reproduction
abilities. In order to obtain the best approximation qual-
ities for a designed model it is necessary to minimize
the number of adapted parameters of network and, in
consequence, minimize Eg(w) — generalization error (1):

Ectw) < ELow) +2( 2, E), ()
where: E; — learning error (2), € — range of trust, h —
the number of all synaptic weights

4
EL(w) = ) EQxw),di). @)

k=1

When the generalization error increases, the model be-
comes interpolator for which all input signals, different
from those of the training set are rejected as a mea-
sure background. In order to avoid that it is necessary
to minimize the generalization error by means of ei-
ther building bigger training set or limiting the network
structure. However limiting the network structure exces-
sive cause the increase of learning error Ez(w), which
similarly to Eg(w) when it goes from maximum to mini-
mum. Before it reaches minimum Eg(w) starts behaving
in the other way (it increases in contrast to decreasing
E;(w)). This quality can be used in searching minimum
Eg{(w), because it could make the selection of network
structure faster. Direct observation of Eg(w) is very
time-consuming, because searching its minimum needs
checking error Eg(w) for fully learned network each
time. A better solution is observing error Er(w), which
changes can be observed continuously during teaching
the network. In this case the structure of networks could
be corrected each time after stopping teaching process
with the constant control value of learning set, because
too big a learning set causes the re-increase the gener-
alization error.

3.3. Results of neural network modeling

Obtained results are presented in Figures 5, 6, 7.

Such prepared artificial neural network make possi-
ble predicts values of microhardness in particular depth
with average validation error in range 4.5-6.8%. This
results was satisfactory for producer of this kind of car
elements. The neural network prepares in this way may
be used to design assumed carbon layer thickness of
cross driver carbonized in a fluidized bed.

Distribution of microhardness in surface
layer after carbonizing process

® e N
Wie® »\”11--1{&:‘\ ”&.«0
¥

400 e, - Neasured
TNty @
7 ¥ ‘*’*&& e Caleutlated
£ 300 '*\
é &"Ny*
-_E" ‘V()O \’,.60‘
g
—
=

10 30 50 9
Digtance from surface [pumyj

Fig. 5. Comparison of the assumed and calculated curve of hardness
for place 1 shown in fig. 3.4
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Fig. 6. Comparison of the assumed and calculated curve of hardness
for place 2 shown in fig. 3.4
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Fig. 7. Comparison of the assumed and calculated curve of hardness
for place 3 shown in fig. 3.4

4. Conclusions

Neural network developed and used in this research
is able to modeling distribution of microhardness in sur-
face layer after the carbonizing process in a fluidized
bed. In accordance with empirical obtained distribution
of microhardness, carbon layer thickness of cross driver
is computed. After compared this results with results ob-
tained by neural network modeling, error of prediction
is computed.



This research will be continued to complex solve this
subject and applied it in Industrial plant. The goal is to
obtain possibly the same distribution of microhardness in
all places of car drive after the carbonizing process. The
final solution will be special computer system, which
will be connected in real time [13] with heat medium
and gas distribution station. This connection and special
work application make to possible to add new date in
training and testing data. Connection of this system whit
heat treatment control system makes to possible on-line
control running process [14-15] and support engineering
decision in real time.
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