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HOMOGENEITY AND HETEROGENEITY OF SINGLE CRYSTALSIN CHANNEL-DIE
COMPRESSION; REPRESENTATION OF THE YIELD LOCUS"

JEDNORODNOSC I NIEJEDNORODNOSC MONOKRYSZTALOW W PROCESIE
SCISKANIA W KANALE PROSTYM; REPREZENTACJA ODKSZTALCENIA PLASTYCZNEGO

A polynomial approximation of the flow surface of single crystals deforming plastically on
various slip systems is considered. Because it involves an exponent n, it is known as the power law.
It is shown that, by introducing deviations from the Schmid law (but deviations not discernible by
measurement), an extension of the normality rule can be proposed: not only the flow direction, but
also the rate of rotation due to the glide on the slip systems are obtained in a single algebraic
formula. The validity of all this is assessed by comparing its predictions with the results of the
compression of single crystals in channel-die. The lateral reactions and the lattice rotations have
been measured in typical rolling orientations and found in good agreement with the calculations.
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Przedmiotem pracy jest wielomianowa aproksymacja powierzchni ptyniecia monokrysztaléw
odksztalcanych plastycznie na réznych systemach poflizgu, ktéra ze wzgledu na wystgpujacy
wykladnik n nazywana jest ‘prawem wykladniczym’. Pokazano, ze wprowadzajac mierzalne
odchylenia od prawa Schmidta, mozna zaproponowaé pewne rozszerzenie reguly normalizacji: nie
tylko kierunek plyniecia, ale takze predko$¢ rotacji spowodowanej polizgiem w danym systemie
53 uzyskane w pojedynczej formule algebraicznej. Zasadno$¢ tych spostrzezwii oceniono poprzez
poréwnanie odpowiednich warto§ci oczekiwanych z wynikami $ciskania monokrysztalow
w kanale katowym.

1. Introduction

Experiments have repeatedly shown the validity of the Schmid law [1], which
determines that the flow surface of a plastically deformed single crystal is a polyhedron with
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faces, edges and vertices. Nevertheless, when introduced in the calculations, it leads to
a piecewise linear law of behaviour which is more complicated than a unique analytical
formulation [2]. So scientists have considered algebraic approximations of the yield
polyhedron, thus replacing the vertices by smooth surfaces. Various examples can be found
in [3], in which it is shown that this substitution has a physical basis, i.e. that real crystals or
grains present some scatter around their ideal crystallographic orientations.

The best approximation seems the so-called power law studied for example in [4]. Let
a single crystal deform on G slip systems, the unit vectors of their slip directions being b8
g = 1..G and the unit normals to their slip planes n,. This defines the usual symmetrized

1 s
Schmid factor M# =3 (b2 ®@ nt+nt ®bE) g=1...G and the unsymmetrized one M&=bE ® ns.

Each system has a critical resolved shear stress 2. If T is the applied Cauchy stress, the
power law can be written as:
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f.(T) = [

It easy to demonstrate that f,(T) is as close to the flow polyhedron as whished if — + oo,
It must be noticed that, since T is a symmetrical tensor, an entirely equivalent formulation
using the unsymmetrized Schmid tensors Mé is:

G

1
£2(T) = [2 (M} ] —1=0. 1))

g=1 TC

The deviatoric part S of T can be substituted to T in Eqgs (1,2) since M® and Mé are
symmetrical tensors.

2. Extended form of the normality rule

On the yield polyhedron, the symmetrical tensor of the plastic deformation rates DP is
normal to the faces (where one slip system is active) and undetermined within the flow cone
of the edges and the vertices (several active systems). So if f,(T) or f(S) approximates the
polyhedron, the normality rule is applied and is written classically as:

G
DP=}\.Z|MS : Mg=}"afn(T)

: TP
L @ T ©)

where A is the plastic multiplier. This can be put in parallel with:
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G, G
D= ) fMF and  LP= Y yME, )
g=1 g=1

1
where L¥ is the gradient of the plastic deformation rates (DP =3 (LF + L"T)) and ¥ the shear

Lo |ME T :
rates. Hence the quantities A —_(Tcg)"— can be reinterpreted as:
o IMEC TP L |ME: T
=A = 6
= @y @) ©

By doing this, an approach slightly different from the S ¢ h mid law is taken for the
representation of the plastic flow of the crystal. A critical shear stress is still postulated on
the slip systems with Vg | M8 : T | <t§, but all of them glide with a shear rate given by Eq (6).
When the exponent n is large (n > 6), which is usually the case, the less favoured systems
have very small shear rates, so that the deviation from the S chmi d law (for which it
would be zero) is not discernible by measurement. Combining Eqs (4, 5 and 6) leads to:

W™ o pr_g 26D

P _
D" = JdT aT

(7, 8)

Thus, when f}, (T) is used, an extended form of normality rule allows not only to deduce
the flow rates from the yield locus, but also the rotation rates due to the glide on the slip
systems. Although mathematically close to rate sensitive formulations [S5], it has
completely different physical basis, and applies mainly to cold working. The measurements
made in order to check the validity of Eqs (2, 7) are presented in the following section.

3. Single crystal experiments

Al 1% Mn single crystals of initial height hO were compressed in a channel-die
at room temperature down to h, reaching a logarithmic €, = Ln(h¢h) of 1.3 (Fig.
la). The samples had the initial orientations Goss {110}<001>, Brass {110}<1122,
Copper {112}<111> and Strange {123}<634>. Deformation was conducted by steps
of about €,=0.1 and at each step, the TEFLON™ wrapping was changed so
that friction was at a minimum. Although the experimental evidence of the heterogeneity
of the deformation is well documented [6], these precautions authorize a homogeneous
mechanical analysis at the macroscopic scale in which the samples remain parallelepiped,
the initially right angles inclining of o and B (Fig. 1b).
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Fig. 1. Compression in channel-die: (1a) Appliance, (1b) Angles o and B measured by the profile projector

The analysis was conducted using the formalism of large deformations [7] in which
point M, initially M(X;) J = 1..3, becomes m(x;) i = 1..3 :

h
X, = _ﬁ? X, + tana X, + tanP X,

X=X ©)
X3 = E X
3 ho 3.

1is the elongation direction (ED), 2 the transverse one (TD) and 3 the normal one (ND).

Hence, since F;; = [%:' andL = F - F', if the elastic part of the deformation is neglected:
-J

—E gtanoc+ o(sj;a ZEtan B+5§Tﬁ
L? = 0 0 0 10)
0 0 h
5 h i
D%, =1(£tana+ a ) and D}, =Etan B+——B—. The o and B angles have been
2\H cos?a h 2cos?P

measured by profile projector, as shown for Brass (Fig. 2a), for which § = 0 and Copper
(Fig. 2b), for which o = 0. Similar results have been obtained for Strange (o # 0, 8 # 0). For
Goss, o = B = 0. The corresponding D}, and Df; have been calculated (Fig. 2c and 2d).
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Fig. 2. Geometric evolution of the sample: (2a) Orientation Brass {1f0}<1 12>, measured o and corresponding
D?,, (2b) Orientation Copper {112}<111>, measured B and corresponding Df,

X-ray analysis gave pole figures in the (1, 3) plane, the compressive stress Ts; was
measured and so was the lateral reaction Ty, with the help of an original device shown in
Fig. 3. The sample was poised on a holder, which allowed to measure the micrometric
deflection of the walls of the channel-die, which deform only in the elastic range, outside
the sample. The ratio lateral reaction / compression stress, which would be 0.5 if the
material was isotropic, can be seen for the orientation Goss on Fig. 4a and Brass on Fig. 4b.
Copper and Strange are presented further (Fig. 5d and 6f), all clearly anisotropic.
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Fig. 3. Device for measuring the lateral reaction
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Fig. 4. Ratio lateral reaction / compression stress: (4a) orientation Goss {110}<001>, (4b) orientation Brass
{110}<112>. The same for orientations Copper and Strange can be seen on Fig. 5d and 6f

4. Test of the validity of the power law

Since the macroscopic deformation DP of the test pieces is completely known, the power
law allows to calculate the applied Cauchy stress T within the plastic multiplier A, when the
strain hardening and the crystallographic orientation are given. Since little is known of the
former, it was assumed to be isotropic. The latter is known at the beginning of the
deformation and its variation can be calculated step by step, as becomes clear below. Eq (3)
provides a system of five independent equations with five unknowns which yields S, and
consequently T (Ty; = 0), through a numerical resolution using the Newton-Raphston
method. Hence the ratio Tx/Ts;. The ¥ are calculated through Eq (6) and the value of the

N
imposed Dy; = Z ¥, M4; (it was 5. 10° s”! in the conditions of the experience). The tensor
g=1
of the rotation rates due to the glide on the slip systems is:

N
1 -
REPRACERTD an
g=
and the tensor giving the rates of rotation of the lattice is:

m:%(L—LT)—Q (12)

hence the evolution of the Euler angles ¢,, ® and ¢, which define the orientation
of the lattice.
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The (1, 3) plane being a {111} symmetry plane for Copper, the lattice rotates around the
axis 2. The evolution of the corresponding angle ® is given on Fig. Sa. It shows the
evolution of the crystal towards the stable D {4 4 11}<11118> orientation, as documented
in [8]. The ratio T,,/Ts; depends little on the exponent n and is overestimated by the
calculations (0.6 instead of 0.4).

Experiments and calculations fit better for the orientation Strange and show that after &,
> 0.5 it moves towards a rather stable position close to {135}<211>, for which T2/Tss is
about 0.4 (Fig. 6). The results for Goss and Brass are not presented here for lack of space, but
they are quite satisfactory.
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Fig. 5. Orientation Copper {112}<11 1>. Comparison between: (5a) Simulated evolution of the angle & of rotation
of the crystal lattice, (5b) Pole figure showing the lattice evolution (taken at Ln/hy/h) = 1.3), (5¢) Simulated
evolution of the ratio lateral reaction / stress compression, (5d) Measured evolution of the same
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Fig. 6. Orientation Strange {123}<634>. Comparison between: (6a) Simulated evolution of the angle ¢, of
rotation of the crystal lattice, (6b) Same, with ®, (6c) Same, with @,, (6d) Pole figure showing the lattice
evolution (taken at Ln(ho/h) = 1.3), (6€) Simulated evolution of the ratio lateral reaction / stress compression,
(6f) Measured evolution of the same

5. Conclusion

In spite of strong hypotheses of homogeneity, a good agreement was found between the
experiments and the calculations using the power law and the extended normality rule. This
shows that they form a robust instrument to predict the plastic behaviour of single crystals
and prompts to do further use of it, namely:

— introduce them in a finite element code, and take full account of the effects of the
friction,



109

— calculate the corresponding incremental law of behaviour and use it in bifurcation
criteria such as Rice’s, for the prediction of shear bands.

REFERENCES

[1] E.Schmid, W. B o as, Kristallplasticitdt mit besonderer Beriicksichtigung der Metalle, Springer-Verlag
(1935).

[2] JR. Rice, W.T. Koiter, Theoretical and Applied Mechanics, North-Holland Publishing Company,
207-219 (1976).

[31P.Lequeu, P.Gilormini, F. Montheillet, B. Bacroix, JJ. Jonas, Acta Metall. 35, 5,
1159-1174 (1987).

[4] M. Armin jon, Doctorate of Habilitation, Paris-Nord University, France (1988).

[SIL.T6th,P.Gilormini,JJ. Jonas, Acta Metall. 36, 12, 3077-3091 (1988).

[6] Z.Jasiefiski, A. Piatkowski, Archives of Metallurgy 38, 3, 279-301 (1993).

[71 F. Sidoroff, Large deformations, GRECO report n° 51/1982, Summer school in Sophia-Antipolis,
France (1982).

[81 R.Becker,JF. Butler, H. Hu, L.A. Lalli, Metall. Trans. A, 22A, 45-58, January (1991).

Received: 24 January 2005.





