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ON ALGORITHMS FOR INDEXING OF K-LINE DIFRACTION PATTERNS?

ALGORYTMY DO INDEKSOWANIA OBRAZOW DYFRAKCYJNYCH KIKUCHPEGO

Thanks to the progress in computer control of electron microscopes and in microscope
cameras there is a strong trend towards automatic analysis of electron diffraction patterns.
Such analysis allowed for creation of fully automatic orientation imaging — an important
technique of investigation of polycrystalline materials. Two essential parts of the analysis
are the indexing of the patterns and the determination of orientations. We are particularly
concerned with systems using transmission electron microscopy (TEM) and Kikuchi
patterns; with small solid angle covered by these patterns, indexing is a challenging prob-
lem. The indexing procedures are expected to be fast and reliable even in the presence of
experimental errors in geometric parameters of the patterns. The first step towards optimal
indexing is to formalize the problem. It is shown that indexing can be reduced to matching
two sets of points: “Two point sets G and H are given. Determine a rotation carrying
the largest subset of G to a position approximating a subset of H”. Some new algorithms
solving this problem are proposed. They are based on the generalized Hough transform
with the rotation space as the parameter space. In the simplest case, a pair of points - one
point from each set — contributes to rotations along a curve in the rotation space. After
contributions are made by all pairs, the cell in the rotation space which received the largest
number of contributions is considered to represent the orientation of the crystallite. Once
the orientation is known, one can easily assign Miller indices to reflections.

Keywords: Transmission electron microscopy; Diffraction; Pattern matching; General-
ized Hough transform.

Dzieki postgpowi w komputerowym sterowaniu mikroskopami elektronowymi i unowo-
cze$nieniu kamer do tych mikroskop6w istnieje silna tendencja do rozwijania automatycznej
analizy elektronowych obrazéw dyfrakcyjnych. Taka analiza pozwala na tworzenie w pelni
automatycznych map orientacji — waznej techniki badania materiatléw polikrystalicznych.
Dwiema istotnymi kwestiami w tej analizie jest indeksowanie obrazéw dyfrakcyjnych i wy-
znaczanie orientacji. Szczegélnym wyzwaniem jest indeksowanie obrazéw dyfrakcyjnych
Kikuchi’ego powstalych w transmisyjnym mikroskopie elektronowym. Procedury in-
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deksujace powinny by¢ szybkie i skuteczne nawet w przypadku biedéw eksperymentalnych
wplywajacych na parametry geometryczne tych obrazéw. Formalne ujecie problemu jest
pierwszym krokiem do zoptymalizowania procedur indeksujacych. Pokazano, ze problem
moze zostaé sprowadzony do poréwnania dwéch zbioréw punktéw: ,,Dane s3 dwa zbiory G
i H. Zadaniem jest wyznaczenie obrotu, ktéry przeksztalca najwigkszy podzbi6r zbioru G
w podzbiér zbioru H z pewnym bledem aproksymacji”. Zaproponowano nowe algorytmy
rozwigzujace ten problem. Bazujg one na uogélnionej transformacie Hougha z prze-
strzenig obrotéw jako przestrzenig parametréw. W najprostszym przpadku, para punktéw —
po jednym z kazdego zbioru — glosuje na obroty potozone wzdtuz krzywej w przestrzeni
obrotéw. Po tym jak kazda para ,,oddata” sw6j glos, przyjmuje sie, ze komérka w przestrzeni
obrot6w, ktéra uzyskata najwigksza liczbe gloséw reprezentuje orientacje krystalitu. Jezeli
znana jest orientacja tatwo mozna przyporzadkowaé refleksom indeksy Millera.

1. Introduction

One of the important aspects of the investigation of polycrystalline materials is
the determination of the topography of crystallites. This can be done by measurements
of local orientations. There are a number of methods to determine crystal orientations
from electron diffraction patterns. Particularly suitable for that purpose is the family of
the so-called K-line diffraction patterns [1] which comprises: X-ray Ko s s e 1 patterns,
Kikuchi patterns, convergent beam electron diffraction (CBED) patterns, electron
backscattering diffraction (EBSD) patterns and channeling patterns.

‘Manual’ analysis of diffraction patterns is time consuming and prone to errors.
Therefore, there is a trend towards fully automatic procedures. Such procedures al-
low for orientation mapping. The orientation mapping techniques were originated in
mid-eighties using Kossel patterns [2]. Nowadays, orientation maps are creat-
ed based on a step-by-step beam scan on computer controlled electron microscopes
equipped with digital cameras. At each step, a diffraction pattern is acquired and
indexed, and an orientation is determined. The automatically generated orientation
maps complement conventional contrast images with quantitative information on grain
orientations. Particularly successful are orientation mapping systems using scanning
electron microscopy (SEM) and EBSD patterns. EBSD/SEM mapping is already a
well established technique of characterization of polycrystalline materials [3, 4].

Here, we are focused on indexing applied to orientation mapping based on trans-
mission electron microscopy (TEM) and Kikuchi patterns [5]. The approach is
similar to that of SEM/EBSD systems. The resulting maps have relatively good spatial
resolution and good accuracy in relative orientations. These two features are important
for ultra-fine microstructure and sub-grain characterization. On the other hand, in the
case of TEM, indexing is relatively complex because large Milller indices of the
diffracting planes must be taken into account. The TEM orientation mapping provides
results complementary to those of SEM/EBSD systems.

It must be mentioned that TEM orientation maps can also be obtained by the
so-called ‘Dark Field Scanning’ with orientation at a given point determined from
intensities corresponding to various incident beam directions [6]. Moreover, a mapping
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system employing selected area diffraction (spot) patterns and template matching has
been created recently [7]. These are time efficient approaches, which do not employ
indexing procedures of the type described here. However, in both cases, the orientation
accuracy is relatively low.

The standard analysis of K-line diffraction patterns is performed in two stages: line
detection and indexing (Fig. 1). (In the case of Kossel patterns, the first stage is the
detection of conics.) Line detection is done either ‘manually’ or by using automatic
procedures. Although, automatic line detection is not a subject of this paper, we would
like to note that for better performance of line detection algorithms, specific features
of diffraction patterns must be taken into account, and therefore, dedicated programs
are written for that purpose; to our knowledge, all currently maintained systems use
the Hough transform, which is a robust, effective and easy to understand method based
on an accumulation in the parameter space. A Kikuchi diffraction pattern shows
deficit and excess lines. Therefore, separate lines are detected, and then lines with
similar inclinations (i.e., nearly parallel) are grouped together to create line pairs. In
the case of EBSP, large consolidation of images is used and usually diffraction bands
are detected. Locations of line pairs or bands are used as an input for indexing.

Generally, indexing or assigning Miller indices to diffraction lines or bands
can be performed without knowing the crystal structure or its orientation. Here, the
term ‘indexing’ is used in a narrow sense, i.e., it is assumed that the structure of the
material is known. Thus, it is also known, which reflections are forbidden and which
are detectable. In principle, intensities of lines or bands can be used. In practice, it is
sufficient to index diffraction patterns based on the geometry without using intensities
of particular reflections, i.e., only the “on-off” case plays a role.

K-line diffraction patterns of different types have the same diffraction geometry,
and the same principles are applicable for indexing in all these cases. Differences lie
in the already mentioned type of input data (bands, line pairs, single lines) and in
the solid angle covered by the detector. That angle is related to the sample-to-detector
distance (effective camera length) and is relatively small for patterns originating from
TEM. Roughly, the smaller the acquisition angle, the higher index reflections must be
taken into account, and this has an influence on the reliability of the indexing results.

Orientation mapping is the most obvious reason for development in automatic
indexing. However, there are other situations, in which automatic indexing is very
useful. In particular, this concerns cases in which there is interest in solving single
patterns, like in residual strain determination or in analysis of a specific interface.

Indexing procedures are expected to be general (applicable to arbitrary crystal
symmetries and structures), robust and fast. There are a number of different algorithms
used for indexing [8-11]. All of them were created based on a ‘trial and error’ search
for an approach that gives satisfactory results. On the other hand, the ideal situation
would be to formalize the indexing problem and to index the patterns by an algorithm
proven to be optimal. The goal of this paper is to present an unknown formal side
of indexing. It will be shown that an approach similar to Hough transform can be
used for solving the indexing problem. This new heuristic approach turns out to be
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Fig. 1. Ilustration of main stages of K-line patter analysis. The corrected Kikuchi pattern (courtesy
of E. Bouzy, Univ. De Metz) shown in (a) is subject to line detection (b). The detected lines are a basis
for indexing (c)

a generalization of some existing indexing procedures and it allows for a perspective
view on the indexing in general. It is also instructive because it explains indexing based
on the well understood procedure of Hou gh transform.

2. Formal aspects of indexing and orientation determination

Generally, indexing is performed by matching geometric features of the diffrac-
tion pattern in the sample reference frame with the corresponding features obtained
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from crystallographic data. More precisely, reciprocal lattice vectors acquired from an
experimental pattern are matched with vectors calculated from crystallographic data.

It is convenient to represent the data in two Cartesian reference frames, one at-
tached to the sample, the other one — to the crystal:

— For a given Kikuchi pair, the coordinates of the reciprocal lattice vector g
in the sample reference frame can be calculated directly from parameters of detected
lines or bands based on the Kossel cone equation? g - g =+2k - g, where k represents
the wave vectors of reflected beam. See Fig. 2.

Fig. 2. Schematic illustration of Kossel cones and the geometry of K-line diffraction patterns

— In the crystal coordinate system, the Cartesian coordinates of the reciprocal
lattice vector h corresponding to the reflecting plane A*=(h k [) are given by b =A"!
(h*)T, where the (ij) element of A is the j-th Cartesian component of the i-th direct
lattice basis vector.

For a given pattern, one has two figures: G — composed of all g vectors related
to detected reflections, and HH — composed of all & vectors related to potentially
detectable reflections in the pattern. The indexing is done by matching g vectors with
h vectors, or more precisely, by determining a subfigure of H which is congruent to
G. Let the matrices G and H be built of all available vectors g and h, respectively, as
matrix columns. Apart from experimental errors, there exists a rotation transforming
vectors of G on certain vectors in . Thus, there exist a proper orthogonal matrix O
such that

O-G=H-P,

D The relationdhip follows directly from the Laue equation.
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P is an unknown rectangular matrix with zero entries everywhere except the value
of 1 at each entry (mn) such that the m-th h vector corresponds to the n-th g vector
(i.e., there is exactly one ‘1’ in each column). The matrix P represents the assignment
(indexing) problem and O corresponds to the orientation determination problem.

Once O is known, it is straightforward to determine P by comparing columns of
OG with H. And vice versa, knowing P, one can determine O: Assuming that the
assignment is known, there is a standard procedure for matching vectors; the issue
is equivalent to the (Procrustes) problem of getting the ‘best’ orthogonal matrix O
transforming G on H’= HP. The problem is linear and its solution has been described
numerous times [12-16]. We will refer to it as spherical regression.

It is obvious that errors in line detection are inevitable. In particular, the accuracy
of the line parameters is limited and the matrix OG is only approximately equal to
HP. Therefore, it is natural to portray the indexing problem as a modification of the
Procrustes problem: find P and O minimizing |[HP-OG/?, where | - | denotes the
Frobenius norm. In this formulation, the indexing problem lies in combinatorial (P)
and continuous (Q) optimization.

However, another important type of errors are spurious lines or bands. These
errors lead to illegitimate g vectors. This, in turn, means that only a part of G can be
actually congruent to a subfigure of H. The simplest approach to this complication
is to eliminate spurious g vectors by considering subfigures of G, and to use some
additional criteria of accepting a solution for a given subfigure.?

For solving similar problems in computerized imaging Rangarajan, Chui and Book-
stein [17] proposed a ‘softassign matching’. The mixed (combinatorial + continuous)
problem is replaced by a purely continuous nonlinear problem. The matrix representing
combinatorial part of the problem is allowed to have continuous entries but its evolution
in the optimization process is guided by additional constraints and barrier functions.

Allowing for spurious vectors is an integral part of a certain issue considered in
computational geometry. The ‘largest common point set’ problem is usually formulated
in terms of point sets and in a more general framework: Given two point sets G and
H and a positive number & determine the largest subset of G such that there is an
isometry carrying G to a position in which each point of the subset is not further than &
from a point of H (e.g., [18]). There is a considerable interest in the ‘largest common
point set’ problem because of its applications to determination of structural similarities
in macromolecules and recognition of molecules. What matters here is that with the
isometry being a proper rotation and points of G and # identified with their position
vectors bound to the fixed center of rotation, the largest common point set problem is
actually a mathematical formulation of the indexing problem. The term ’constellation
problem’ is sometimes used to describe point matching (e.g., [19]). However, it fits

) Formally, P must be allowed to have some zero columns, and one needs to rewrite our basic
equation as OG * = HP, where the matrix P’ is like the identity matrix except that I’s on the diagonal of
P’ are allowed to be replaced by zeros if they correspond to spurious line paris or bands. The optimization
procedure needs a modification because one must minimize the number of zero columns in P and P’
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better the limited case with isometric transformations limited to rotations, and we use
it in this narrow sense.

3. Indexing as the generalized Hough transform

There is an approach to the indexing/orientation determination problem, which
provides a family of solutions and sheds some light on indexing in general. The meth-
ods can be seen as heuristic solutions to the constellation problem. They are based on
rating orientations by making an accumulation in the orientation space.
Accumulation along curves
Let g and k denote normalized vectors g and A, i.e., g =g /|gl and h = k / |h|. Given
g and A, the accumulation is made at all rotations t—ransforming g on h. There is a
relatively easy way to calculate the parameters of such rotations. Let R (x, w) be the
special orthogonal matrix of the rotation by the angle w about the axis determined by
x. It can be shown that for g + & # 0, the matrix

O(w) = R(g + h,MR(Eg, w),

carries g on h, i.e. O (w)g= h; see, e.g., [20]. For w given by the numbers between
0 and 2r, the rotations corresponding to O(w) cover a closed curve in the parameter
space. Rotations on this curve are potential solutions to the indexing problem. If the
considered k& actually matches the considered g, one of these rotations is a true solution.
In reality, the g vector may correspond to a different vector of . and this means that
all other vectors of this set must be taken into account. Ultimately, all pairs of vectors
— one vector from G and one from H — are used to make the accumulations along
corresponding curves in the rotation space.

Congruent subsets of G and H lead to accumulation along curves intersecting at
one point corresponding to the rotation caring one subset onto the other one. Since
we are looking for the largest matching subsets of G and H, it is enough to locate the
maximum in the accumulator space; the maximum corresponds to the parameters of
the sought rotation. This approach to orientation determination and indexing can be
seen as a form of the generalized Hough transform.

The above argumentation is based on the assumption of an exact congruency
between the largest matching subsets of G and /. When the match is only approximate,
the curves do not intersect at a point but are located at some distances from the optimal
rotation. This can be taken into account by replacing the sharp curves by smooth
distributions. Von Mises-Fisher distribution is suitable for this purpose [21].

A simpler way of locating the maximum is to partition the accumulator space into
cells, and to take the center of the cell with the largest accumulation as the matching
rotation. The resolution of the method is linked to the cell size, and the latter must be
related to the level of experimental errors. The partitioning of the parameter space is
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a bit complicated because the (rotation) space is curved and cannot be parameterized
without some singularities. Moreover, the accumulation must be scaled by the ‘invariant
volume’ of the cells. Therefore, some parameterizations (e.g., the so-called isochoric
parameters [22]) turn out to be convenient while other parameter sets (e.g., Euler
angles, which are affected by ‘gimbal lock’) are not.

Since normalized vectors g and h were used in the above considerations, g and
h with considerably different magnitudes are taken into account as a possible match.
This can be easily avoided: Knowing the bandwidth or a distance between a pair of
Kikuchi lines, one can estimate the magnitudes of g vectors, and the magnitudes
of h vectors are directly available. If the difference in magnitudes is beyond certain
threshold, the pair g and h may be rejected as a possible match. For many pairs, this
rejection step allows for skipping the accumulation in the parameter space.

In the above considerations, it was assumed that g# —h, i.e., there was no accu-
mulation at some rotations by . Frequently, such rotations can be excluded as possible
solutions based on some additional arguments. (For instance, the largest rotation angle
necessary to describe all orientations of a cubic crystal is 62.8°.) If there are no such
arguments, one can match H to G transformed by a known rotation so the cases with
g = —h are avoided.

Matching pairs of vectors

Now, let us take a step forward. Instead of using one vector from each set, one may
take a pair (or doublet) and determine a rotation carrying a doublet from G on a
doublet from 7. This makes sense only if the doublets are approximately congruent.
Congruency can be checked by comparing vector magnitudes and the angle between
the vectors. If the doublets differ too much, they are not accepted as a possible match;
otherwise, accumulation is made in the rotation space at the rotation determined by
the fore mentioned spherical regression. This is again a form of the generalized Hough
transform. This time, the accumulation is made not along curves but at points of the
accumulator space. After considering all different doublets from G and H, a solution of
the indexing problem is obtained by locating the maximum in the accumulator space.
As in the previous case, this can be done by partitioning the parameter space or by
using smooth (von Mises-Fisher) distributions.

A considerably more convenient alternative approach is to create a list of potential
solutions. A rotation determined from two doublets is appended to the list only if it
differs by a threshold from each of the already saved solutions. If the rotation is close
to one of the solutions, the accumulation ascribed to that solution is increased, and
the solution is corrected by taking the weighted average [23] of the solution and the
rotation.

Higher order procedures

Two doublets already determine a point in the rotation space. Thus, adding new vectors
to such doublets and using triplets, quadruplets (generally, n-tuples) can only sharpen
criteria for the congruence of the considered subsets. The procedures of order one and
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two, which were described above, are in a sense elemental in comparison to higher
order procedures involving n-tuples (with n > 2).

Such higher order procedures have been already applied to indexing. A third order
‘voting’ has been used for indexing diffraction patterns in one of the EBSD systems
[8]. Moreover, there is a relation between some of the strategies used for indexing
Kikuchi patterns [9] and the approach with highest possible order » equal to the
number of vectors in G; in this case, one begins with all determined g vectors and
uses the rejection step to reach the solution.

It is worth noting that the reliability of results depends on the order n. For instance,
we have compared reliability of the third and the fourth order procedures by applying
them to simulated Kikuchi patterns. The former turned out to be better. This indicates
that it might be even better to use the second order. It is planned to verify this indication.

4. Final remarks

Automatic indexing of K-line diffraction patterns is essential for further develop-
ment of local texture analysis. It is believed that there is a room for improvement of
the reliability of the existing indexing procedures. This is particularly important in the
cases of low symmetry materials, and poor quality patterns. It is proposed to formalize
the indexing problem and search for its optimal solution. As a possible approach, we
suggest application of various forms of the generalized Hough transform. Some of
them turn out to be already applied in existing systems but those of lowest order have
not been tested yet.

One may speculate about future developments in automatic indexing. Within the
framework described above, besides the verification of the applicability of the low order
schemes, some other steps can be envisioned. E.g., the current path form a pattern to
an orientation consists of the line or band detection and indexing. Since both steps
are based on accumulation, one may consider skipping the intermediate stage of line
detection and making the accumulation directly in the orientation space.

Moreover, applying template matching, analogous to that of Rauch [7], to
indexing of K-line patterns seems to be feasible but there are a number of concerns,
which must be taken into account. First, K-line patterns are much more complex than
spot patterns and their signal-to-noise ratio is much lower. Moreover, variability of
K-line patterns with orientation is much stronger than that of spot patterns. On the other
hand, the template matching may be appealing because the approach is conceptually
very simple.

There is also an issue of indexing K-line diffraction patterns, in which only one of
the lines of the pair can be detected and the other one is out of view. This is usually the
case for Ko ssel and CBED patterns, and may occur for Kik uchi patterns if they
are collected with large camera lengths. There is no problem with indexing Kossel
patterns because the curvature of conics allows for the determination of parameters of
the diffracting plane. However, the case of Kik uchi or CBED patterns is complex.
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We are not aware of any automatic method of indexing directly such patterns from
single lines.
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